不談?dòng)?jì)算,從原理上看LLC的工作過程!
發(fā)布時(shí)間:2020-02-20 責(zé)任編輯:wenwei
【導(dǎo)讀】LLC半橋諧振電路中,根據(jù)這個(gè)諧振電容的不同聯(lián)結(jié)方式,典型LLC諧振電路有兩種連接方式,如下圖1所示。不同之處在于LLC諧振腔的連接,左圖采用單諧振電容(Cr),其輸入電流紋波和電流有效值較高,但布線簡單,成本相對較低;右圖采用分體諧振電容(C1, C2),其輸入電流紋波和電流有效值較低,C1和C2上分別只流過一半的有效值電流,且電容量僅為左圖單諧振電容的一半。
LLC技術(shù)已經(jīng)普及了,再不會(huì)就要落后啦!
LLC半橋諧振電路中,根據(jù)這個(gè)諧振電容的不同聯(lián)結(jié)方式,典型LLC諧振電路有兩種連接方式,如下圖1所示。不同之處在于LLC諧振腔的連接,左圖采用單諧振電容(Cr),其輸入電流紋波和電流有效值較高,但布線簡單,成本相對較低;右圖采用分體諧振電容(C1, C2),其輸入電流紋波和電流有效值較低,C1和C2上分別只流過一半的有效值電流,且電容量僅為左圖單諧振電容的一半。
LLC半橋諧振電路基本原理
LLC諧振變換的直流特性分為零電壓工作區(qū)和零電流工作區(qū)。這種變換有兩
個(gè)諧振頻率。一個(gè)是Lr 和Cr的諧振點(diǎn),另外一個(gè)諧振點(diǎn)由Lm, Cr以及負(fù)載條
件決定。負(fù)載加重,諧振頻率將會(huì)升高。這兩個(gè)諧振點(diǎn)的計(jì)算公式如下:
考慮到盡可能提高效率,設(shè)計(jì)電路時(shí)需把工作頻率設(shè)定在fr1附近。其中,fr1為Cr,Lr串聯(lián)諧振腔的諧振頻率。當(dāng)輸入電壓下降時(shí),可以通過降低工作頻
率獲得較大的增益。通過選擇合適的諧振參數(shù),可以讓LLC諧振變換無論是負(fù)載變化或是輸入電壓變化都能工作在零電壓工作區(qū)。
總體來說LLC半橋諧振電路的開關(guān)動(dòng)作和半橋電路無異,但是由于諧振腔的加入,LLC半橋諧振電路中的上下MOSFET工作情況大不一樣,它能實(shí)現(xiàn)MOSFET零電壓開通。其工作波形圖如下:
上圖為理想半橋諧振電路工作波形圖;圖中,Vgs1 和 Vgs2 分別是 Q1、Q2
的驅(qū)動(dòng)波形,Ir為諧振電感Lr電感電流波形,Im為變壓器漏感Lm電流波形,Id1和Id2分別是次級側(cè)輸出整流二級管波形,Ids1則為Q1導(dǎo)通電流。波形圖根據(jù)不同工作狀態(tài)被分成6個(gè)階段,下面具體分析各個(gè)狀態(tài),LLC諧振電路工作情況:
T0~ T1: Q1關(guān)斷、Q2開通;這個(gè)時(shí)候諧振電感上的電流為負(fù),方向流向Q2。在此階段,變壓器漏感不參加諧振, Cr、Lr組成了諧振頻率,輸出能量來自于Cr和Lr。這個(gè)階段隨著Q2關(guān)斷而結(jié)束。下圖3為LLC半橋諧振電路在T0~ T1工作階段各個(gè)元器件工作狀態(tài)。
T1~ T2:Q1關(guān)斷、Q2關(guān)斷;此時(shí)為半橋電路死區(qū)時(shí)間,諧振電感上的電流仍為負(fù),諧振電流對Q1的輸出電容(Coss)進(jìn)行放電,并且對Q2的輸出電容(Coss)進(jìn)行充電,直到Q2的輸出電容的電壓等于輸入電壓(Vin),為Q1下次導(dǎo)統(tǒng)創(chuàng)造零電壓開通的條件。由于Q1體二級管此是出于正向偏置,而Q2的體二級管示反相偏置,兩個(gè)電感上的電流相等。輸出電壓比變壓器二次側(cè)電壓高,D1、D2處于反偏狀態(tài),所以輸出端與變壓器脫離。此階段,Lm和Lr、Cr一同參加諧振。隨著Q1開通,T1~ T2階段結(jié)束。下圖4為LLC半橋諧振電路在T1~ T2工作階段各個(gè)元器件工作狀態(tài)。
T2~ T3: Q1開通、Q2關(guān)斷(一旦Q1的輸出電容被放電放到零時(shí))。此時(shí)諧振電感上的電流仍舊為負(fù),電流經(jīng)Q1的體二級管流回輸入端(Vin)。同時(shí),輸出整流二級管(D1)導(dǎo)通,為輸出端提供能量。變壓器漏感(Lm)在此階段被持續(xù)充電。只有Lr和Cr參與諧振。一旦諧振電感Lr上的電流為零時(shí),T2~ T3階段結(jié)束。下圖5為LLC半橋諧振電路在T2~ T3工作階段各個(gè)元器件工作狀態(tài)。
T3~ T4:此階段始于諧振電感Lr電流變負(fù)為正,Q1開通、Q2關(guān)斷,和T2~ T3階段一樣。諧振電感電流開始從輸入端經(jīng)Q1流向地。變壓器漏感Lm此時(shí)被此電流充電,因此參加諧振的器件只有Lr 和Cr。輸出端仍由D1來傳輸能量。隨著Q1關(guān)斷,T3~ T4階段結(jié)束。下圖2-6為LLC半橋諧振電路在T3~ T4工作階段各個(gè)元器件工作狀態(tài)。
T4~ T5: Q1關(guān)斷,Q2關(guān)斷;此時(shí)為半橋電路死區(qū)時(shí)間。此時(shí),諧振電感電流對Q1的輸出電容Coss進(jìn)行充電,并對Q2的輸出電容Coss進(jìn)行放電直到Q2上輸出電容電壓為零,導(dǎo)通Q2的體二級管,為Q2零電壓開通創(chuàng)造條件。在此期間,變壓器二次側(cè)跟T1~ T2階段一樣,脫離初級側(cè)。在死去時(shí)間,變壓器漏感Lm參與諧振。此階段隨著Q2開通而結(jié)束。下圖7為LLC半橋諧振電路在T4~ T5工作階段各個(gè)元器件工作狀態(tài)。
T5~ T6: Q1關(guān)斷,Q2導(dǎo)通。由于T4~ T5階段中Q2的輸出電容已經(jīng)被放電至零,因此T5~ T6階段Q2以零電壓開通。能量由諧振電感Lr經(jīng)Q2續(xù)流,輸出端由D2提供能量。此時(shí),Lm不參與Lr和Cr的諧振。此階段隨著諧振電感Lr電流變?yōu)榱愣Y(jié)束,重復(fù)T0~ T1狀態(tài)。下圖8為LLC半橋諧振電路在T5~ T6工作階段各個(gè)元器件工作狀態(tài)。
由以上工作狀態(tài)可以看出,除了Q1、Q2死區(qū)時(shí)間外,絕大多數(shù)時(shí)間,電路都可以工作在由Lr和Cr構(gòu)成的較高的諧振頻率。這種情況下,變壓器漏電感由于被輸出電壓所鉗位,因此,它會(huì)作為Lr,Cr串聯(lián)諧振腔的負(fù)載形式存在,而不參與整個(gè)諧振過程。由于這個(gè)被動(dòng)負(fù)載,LLC諧振變換輕載穩(wěn)壓可以不再需要很高頻率。而且,由于這個(gè)被動(dòng)Lm負(fù)載,可以保證在任何負(fù)載情況下都能工作在零電壓開關(guān)狀態(tài)下。
推薦閱讀:
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計(jì)
- ADI電機(jī)運(yùn)動(dòng)控制解決方案 驅(qū)動(dòng)智能運(yùn)動(dòng)新時(shí)代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 中微公司成功從美國國防部中國軍事企業(yè)清單中移除
- 華邦電子白皮書:滿足歐盟無線電設(shè)備指令(RED)信息安全標(biāo)準(zhǔn)
- 功率器件熱設(shè)計(jì)基礎(chǔ)(九)——功率半導(dǎo)體模塊的熱擴(kuò)散
- 準(zhǔn) Z 源逆變器的設(shè)計(jì)
- 第12講:三菱電機(jī)高壓SiC芯片技術(shù)
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
單向可控硅
刀開關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點(diǎn)膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動(dòng)車
電動(dòng)工具
電動(dòng)汽車
電感
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險(xiǎn)絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖