-
前端放大器中使用ESD二極管作為電壓鉗的設(shè)計
在輸入不受系統(tǒng)控制而是連接到外部世界的許多應(yīng)用中,例如測試設(shè)備、儀器儀表和一些傳感設(shè)備,輸入電壓可能會超過前端放大器的ZD額定電壓。在這些應(yīng)用中,必須實施保護方案以保持設(shè)計的生存范圍和穩(wěn)健性。
2021-10-20
-
利用多相三電平降壓變換器設(shè)計提高RF功率放大器效率的包絡(luò)跟蹤電源
RF功率放大器(RFPA)需要龐大的冷卻設(shè)備,眾所周知,因為只要借助恒定的直流電源電壓供電,它就會散發(fā)熱量。所以通常冷卻設(shè)備都會占據(jù)射頻發(fā)射器系統(tǒng)的很大一部分。要提升RFPA的效率,根本原理和解決之道在于使用包絡(luò)跟蹤 (ET) 電源,因為這種電源調(diào)制器具有較高的峰-均峰值 (PARP)。
2021-10-12
-
運算放大器的輸入偏置電壓
輸入偏置電壓是指有差分輸入電路的運算放大器或比較器帶有的誤差電壓。理想運算放大器或比較器的偏置電壓為0V。
2021-09-14
-
如何實現(xiàn)伽馬光子輻射檢測器的設(shè)計
這篇文章主要討論了實現(xiàn)伽馬光子輻射檢測器的設(shè)計注意事項,原理圖和組件選擇。該設(shè)計由一個PIN光電二極管,四個低噪聲運算放大器和一個比較器組成,該比較器能夠檢測伽馬輻射的各個光子。
2021-09-12
-
電機驅(qū)動系統(tǒng)設(shè)計指南
本參考設(shè)計使用納芯微的單通道隔離柵極驅(qū)動器NSi6801、高精度隔離電流采樣運放NSi1300、高精度隔離電壓采樣運放NSi1311、數(shù)字隔離器NSi8210、隔離誤差放大器NSi3190,結(jié)合使用C2000系列LAUNCHXL-F28379D的軟硬件控制平臺共同實現(xiàn)逆變主拓撲,實現(xiàn)三相電機在典型輸入電壓下穩(wěn)定運行。
2021-09-10
-
如何正確地布設(shè)運算放大器
電路設(shè)計過程中,應(yīng)用工程師往往會忽視印刷電路板(PCB)的布局。通常遇到的問題是,電路的原理圖是正確的,但并不起作用,或僅以低性能運行。
2021-09-10
-
運算放大器的噪聲特性
近年來,已經(jīng)推出了很多抗雜訊運算放大器,市場對這類產(chǎn)品的需求也與日俱增。在這里介紹一下這些噪聲的定義。
2021-09-07
-
如何掌握運算放大器功耗與性能的權(quán)衡之術(shù)?
高性能,低功耗:越來越多的應(yīng)用需要滿足這一需求,尤其是由電池供電的移動設(shè)備。特別是在物聯(lián)網(wǎng)、工業(yè)4.0和數(shù)字化時代,這些手持設(shè)備大大方便了人們的日常生活。從移動生命體征監(jiān)測到工業(yè)環(huán)境中的機器和系統(tǒng)監(jiān)測,很多應(yīng)用紛紛受益。智能手機和可穿戴設(shè)備等終端用戶產(chǎn)品也要求更高的性能和更長的電池壽命。
2021-09-06
-
差分運放和儀表放大器應(yīng)用科普貼——模擬小信號前端處理探索
圍繞如何處理小信號前端這一話題,近期引起了一波討論熱潮?!妒勒f芯語》專欄的特邀作者小狼在這里就小信號前端、確定測量范圍、抑制噪聲、提高信噪比等問題進行了介紹和分析。
2021-09-05
-
使用增強模式NMOS晶體管的簡單差分放大器
本次實驗旨在研究使用增強模式NMOS晶體管的簡單差分放大器。2021年6月學子專區(qū)文章 中提出的關(guān)于硬件限制問題的說明對本次實驗也是有效的。通過提高信號電平,然后在波形發(fā)生器輸出和電路輸入之間放置衰減器和濾波器(參見圖1),可以改善信噪比。本次實驗需要如下材料:
2021-09-01
-
利用可采用電子方式重新配置的GaN功率放大器,徹底改變雷達設(shè)計
本文首次展示了一種基于多頻段發(fā)射器設(shè)計的可靠商用大功率放大器,該放大器采用了 Charles Campbell 演示的可重新配置的 PA 專利技術(shù) [2,3,4]??芍匦屡渲玫?PA 采用可根據(jù)每個相關(guān)頻段的控制位設(shè)置重新配置的單輸入和單輸出匹配網(wǎng)絡(luò)。每個位設(shè)置針對特定頻段的最優(yōu)性能配置所有匹配網(wǎng)絡(luò),從而使 PA 能夠在緊湊型封裝中實現(xiàn)最優(yōu)系統(tǒng)級性能。這樣就可以減少整體尺寸和重量。這種新型可重新配置的 PA 設(shè)計方法可克服傳統(tǒng)多頻段發(fā)射前端設(shè)計的多個缺點。最明顯的優(yōu)勢就是可消除 PA 輸出的頻段選擇開關(guān)。從而將輸出損耗降低了 0.8-1.0 dB,使其與傳統(tǒng)設(shè)計方法相比具有明顯的優(yōu)勢。如果設(shè)計采用最佳負載阻抗和智能開關(guān)布局,可重新配置 PA 則可接近通過特定的獨立調(diào)諧頻段放大器實現(xiàn)的性能水平。
2021-09-01
-
基于壓電主動傳感技術(shù)中功率放大器的應(yīng)用
本實驗將利用壓電陶瓷傳感器,通過模型試驗,對基于時間反演技術(shù)的螺栓球節(jié)點連接區(qū)健康狀態(tài)監(jiān)測方法進行驗,時間反演聚焦信號的峰值只與該信號在結(jié)構(gòu)上傳遞時所經(jīng)過的傳播路徑的傳遞函數(shù)有關(guān),當螺栓球節(jié)點內(nèi)部螺栓發(fā)生損壞或未安裝到位(受損狀態(tài))時,相當于傳遞函數(shù)發(fā)生改變,聚焦信號的峰值也會發(fā)生改變。
2021-08-24
- 工業(yè)自動化中的 Raspberry Pi:簡化經(jīng)濟實惠的邊緣計算
- 基于 MHz 開關(guān)頻率的器件助力實現(xiàn) DC-DC 轉(zhuǎn)換器和 EMI 濾波器的小型化
- Type-C端口水汽檢測(LPD)技術(shù)介紹
- ST 新款微型單片降壓轉(zhuǎn)換器,用于智能電表、家電和工業(yè)電源轉(zhuǎn)換器提供低電壓電源
- 芝識課堂——運算放大器(一),電路設(shè)計圖中給力的“三角形”
- SiC JFET并聯(lián)難題大揭秘,這些挑戰(zhàn)讓工程師 “頭禿”!
- 高精度FOC算法加持,電動兩輪車控制器迎來高性能芯片方案
- 2025年及未來半導體行業(yè)的八大趨勢
- 人形機器人、人工智能大模型爆了 來CITE 2025一探究竟
- 通過自舉擴展運算放大器工作范圍
- 代碼開源!國產(chǎn)MCU平臺開發(fā)的EtherCAT工業(yè)PLC伺服驅(qū)動方案
- 安防監(jiān)控方案在工業(yè)互聯(lián)網(wǎng)場景中的應(yīng)用,附實戰(zhàn)方案
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall