【導(dǎo)讀】碳化硅(SiC)技術(shù)具有比傳統(tǒng)的硅(Si)、絕緣柵雙極晶體管(IGBT)等技術(shù)具有更多優(yōu)勢,包括更高的開關(guān)頻率,更低的工作溫度,更高的電流和電壓容量,以及更低的損耗,進(jìn)而可以實(shí)現(xiàn)更高的功率密度、可靠性和效率。本文將為您介紹SiC的發(fā)展趨勢與在儲(chǔ)能系統(tǒng)(ESS)上的應(yīng)用,以及由Wolfspeed推出的SiC電源解決方案。
大幅降低儲(chǔ)能系統(tǒng)成本與提升效率的SiC技術(shù)
當(dāng)前的SiC技術(shù)已經(jīng)相當(dāng)成熟,可以適用在從千瓦到兆瓦功率的工業(yè)應(yīng)用范圍中,影響了能源、工業(yè)和汽車等眾多領(lǐng)域。由于SiC器件運(yùn)作時(shí)的溫度較低,及較小的磁性器件,因此在系統(tǒng)中所需的熱管理和電源器件的尺寸更小、重量更輕、成本更低,從而降低了整體BOM成本,同時(shí)也實(shí)現(xiàn)了更小的占用空間。
隨著SiC技術(shù)的快速發(fā)展,在電力傳輸系統(tǒng)也開始大量采用SiC解決方案,特別在ESS應(yīng)用中,像是電動(dòng)汽車充電系統(tǒng),以及利用電池儲(chǔ)存電能的太陽能系統(tǒng)。這些系統(tǒng)中的DC/DC升壓轉(zhuǎn)換器、雙向逆變器(交流電和直流電互相轉(zhuǎn)換)、電池充電電路,都可以采用SiC技術(shù)的器件,將可提升3%的系統(tǒng)效率,以及提高50%的功率密度,并減少無源器件的體積和成本。
典型的ESS架構(gòu)將包含了電源(光伏)、DC/DC轉(zhuǎn)換器、電池充電機(jī),以便將能量輸送到家庭端或輸送回電網(wǎng)的逆變器,在這三個(gè)電源模塊中采用SiC技術(shù),將可以提高效率,減少尺寸、重量和成本。
例如,在ESS中對收集到的能源進(jìn)行轉(zhuǎn)換,并將其用于存儲(chǔ)或?yàn)樽≌ㄖ╇姇r(shí),必須進(jìn)行DC/DC轉(zhuǎn)換,其將采用光伏應(yīng)用的升壓轉(zhuǎn)換器來實(shí)現(xiàn),SiC技術(shù)將比傳統(tǒng)的硅技術(shù)具有更高的系統(tǒng)效率和功率密度,其系統(tǒng)尺寸將可減少70%,能源消耗也可減少60%以上,系統(tǒng)成本則將會(huì)降低30%,使SiC技術(shù)成為ESS應(yīng)用的最佳選擇。
家用或商用的ESS配置
具有更高的功率密度與系統(tǒng)效率的SiC解決方案
Wolfspeed針對ESS應(yīng)用,推出了多款的SiC解決方案,像是肖特基二極管及MOSFET(具有高達(dá)100A額定電流封裝/196-A裸模封裝),以及WolfPACK系列器件中所使用的具有高達(dá)450A額定電流的功率模塊。這些產(chǎn)品可以適用于單相家用系統(tǒng)(5-15 kW),也可用于三相商用系統(tǒng)(30-100 kW),其架構(gòu)和電源電路拓?fù)浠鞠嗨疲撬鼈兛梢愿鶕?jù)功率級別來進(jìn)行調(diào)整。
以Wolfspeed參考設(shè)計(jì)CRD-60DD12N為例,這是一款采用碳化硅技術(shù)的60kW交錯(cuò)升壓轉(zhuǎn)換器,其中包含幾個(gè)SiC MOSFET和二極管。在架構(gòu)上采用四路交錯(cuò)并聯(lián),可達(dá)到60kW的調(diào)節(jié)輸出功率,并同時(shí)在輸出850VDC時(shí)保持99.5%的效率。該設(shè)計(jì)包含兩個(gè)C3M0075120K MOSFET(具備開爾文源極引腳的TO-247-4L封裝),每路拓?fù)溆袃蓚€(gè)C4D10120D二極管和一個(gè)CGD15SGOOD2隔離式柵極驅(qū)動(dòng)器。
在CRD-60DD12N參考設(shè)計(jì)中,若對不同開關(guān)頻率下的BOM成本進(jìn)行了分析/對比,其在更高的頻率下(100kHz相對于60kHz),將得益于更小、更輕的器件/磁性材料,成本明顯降低,而冷卻系統(tǒng)可能會(huì)由于更高的運(yùn)行溫度而增加一些成本。但總體來說,更高的頻率通常意味著更高的功率密度、更高的系統(tǒng)效率和更低的成本,因此SiC技術(shù)將能夠以更低的價(jià)格提供更好的性能。
基于碳化硅的60 kW交錯(cuò)升壓轉(zhuǎn)換器的參考設(shè)計(jì)
支持先進(jìn)的數(shù)字控制方案的參考設(shè)計(jì)
在應(yīng)用SiC MOSFET進(jìn)行簡單的兩階逆變器/AFE設(shè)計(jì)時(shí),Wolfspeed的參考設(shè)計(jì)可在單相或三相模式下運(yùn)行,充電和放電的峰值效率大于98.5%,突出了SiC在逆變器和DC/DC充電電路中的優(yōu)勢。該參考設(shè)計(jì)的轉(zhuǎn)換器部分包括一個(gè)簡單兩階AC/DC轉(zhuǎn)換器,兼容單相和三相連接,并且只有6個(gè)SiC MOSFET。這種配置雖然不像大多數(shù)的IGBT轉(zhuǎn)換器那樣成本低廉,但會(huì)在效率和損耗方面表現(xiàn)得更好。雖然也可以采用T型AC/DC轉(zhuǎn)換器,來提供了相似的開關(guān)頻率和效率,但這種轉(zhuǎn)換器往往擁有復(fù)雜的控制系統(tǒng),并必須采用更多數(shù)量的部件,且其功率密度較低。
在這個(gè)參考設(shè)計(jì)中,直流輸出電壓可以高達(dá)900 V,而電池電壓通常在800 V左右。由于電及熱應(yīng)力的影響,非常適合采用Wolfspeed公司的C3M0032120K 1200V 32-mΩ SiC MOSFET,其具有一流的品質(zhì)因子、易于控制和Vgs驅(qū)動(dòng)特性、開爾文源極封裝等優(yōu)點(diǎn),可以減少開關(guān)損耗和串?dāng)_等問題。
采用這種拓?fù)浣Y(jié)構(gòu)適合于實(shí)現(xiàn)不同功能的先進(jìn)數(shù)字控制方案,像是用于設(shè)計(jì)單相交錯(cuò)PFC方案,或是采用DQ轉(zhuǎn)換的三相空間向量PWM方案,這些方案可以達(dá)成所有器件開關(guān)損耗的平衡,進(jìn)而形成一個(gè)非常靈活的參考平臺(tái)。利用PWM控制開關(guān)將有助于檢測和功率消耗平衡,同時(shí)優(yōu)化熱性能,提高效率和可靠性。在單相充電的不同電壓、電流范圍,測量各種負(fù)載下的效率時(shí),SiC的效率將高達(dá)98.5%,而IGBT的最高效率為96%,因此SiC的損耗降低約38%。在三相充電時(shí),實(shí)現(xiàn)了相同的峰值效率,同時(shí)在系統(tǒng)和器件限制下的熱性能也運(yùn)行良好。
總體來說,在22kW逆變器/AFE的配置下,C3M0032120K SiC MOSTET和靈活的控制方案可以實(shí)現(xiàn)高效率(>98.5%),以及高功率密度(4.6 kW/L),并具備低損耗(60%),以及雙向充電等特性,可支持來自三相AC和單相AC輸入,也支持輸出200-800 VDC的電池電壓范圍。
在多個(gè)功率級別下充電(左)和放電(右)模式的AFE效率
更低成本與更易控制的隔離型DC/DC轉(zhuǎn)換器設(shè)計(jì)
在進(jìn)行隔離型DC/DC轉(zhuǎn)換器設(shè)計(jì)時(shí),主流的解決方案是半橋LLC和全橋LLC轉(zhuǎn)換器。Wolfspeed的CRD-22DD12N參考設(shè)計(jì)是一種22kW的解決方案,可配置成串級轉(zhuǎn)換器或單級兩階轉(zhuǎn)換器之中。串級轉(zhuǎn)換器可以使用650V Si MOSFET或SiC器件,但Si MOSFET通常會(huì)需要更多數(shù)量的部件,更高的導(dǎo)通損耗,更復(fù)雜的控制,以及更高的系統(tǒng)成本。使用SiC器件的單階兩電平轉(zhuǎn)換器可在更高的電壓(1200 V)和高達(dá)200 kHz的開關(guān)頻率下工作。SiC架構(gòu)的最大優(yōu)勢是更高的效率/更低的損耗,并具有一些額外的特性,如零電壓導(dǎo)通、低電流關(guān)斷和更低的電磁干擾EMI風(fēng)險(xiǎn)。這種拓?fù)浣Y(jié)構(gòu)比串級轉(zhuǎn)換器的部件數(shù)更少,有助于降低系統(tǒng)成本,提供更簡單的控制。
22kW全橋CLLC DC/DC轉(zhuǎn)換器-串聯(lián)式(上)和單級兩電平(下)
在22kW設(shè)計(jì)上選擇功率器件時(shí),Wolfspeed的C3M0032120K 1200V 32mΩ MOSFET將可提供最佳的電氣應(yīng)力和熱特性來適配轉(zhuǎn)換器。此外,它的Vgs可以支持15V,使之更易驅(qū)動(dòng)。它具備可變直流鏈路電壓控制,可依據(jù)感知的電池電壓來使系統(tǒng)效率達(dá)到最佳,并確保CLLC運(yùn)行接近諧振頻率。當(dāng)電池電壓較低時(shí),可將控制模式切換到相移模式,便可降低增益,防止在諧振頻率范圍外低效率地運(yùn)行。
如此一來,這代表著使用相同的硬件也可以在較低的輸出電壓下實(shí)現(xiàn)類似的高效率。如果需要更低的電池電壓,CLLC一次側(cè)可以設(shè)置為半橋運(yùn)行,這將可進(jìn)一步降低增益,但仍維持一定效率。由于其運(yùn)行成本較低,熱設(shè)計(jì)不那么嚴(yán)格,故較低效率仍然可以接受。
這種設(shè)計(jì)的轉(zhuǎn)換器的效率值與逆變器參考設(shè)計(jì)相似,在大多數(shù)負(fù)載上的峰值效率為98.5%。在設(shè)計(jì)采用半橋模式之前,可變直流鏈路電壓和最終效率都保持在97%以上,這限制了充電時(shí)的效率和功率傳輸能力。一般來說,SiC MOSFET加上靈活的控制方案可以實(shí)現(xiàn)更高的效率(>98.5%的充電/放電效率)和更高的功率密度(8 kW/L),并支持單相AC和三相AC輸入的雙向充電。與硅相比,由于柵極驅(qū)動(dòng)器具備的簡單性,可減少熱管理器件,部件數(shù)量更少,并可使用更小的磁性器件,同時(shí)可實(shí)現(xiàn)更高的效率和功率密度,進(jìn)而系統(tǒng)成本得以明顯降低。
SiC和Si在尺寸和重量上的對比
總結(jié)
SiC器件具有更佳的熱性能、更快的開關(guān)速度和更低的損耗,由于其導(dǎo)通電阻對溫度的依賴性較低,使其相當(dāng)適合工業(yè)應(yīng)用,SiC MOSFET在較高溫度下的導(dǎo)通損耗較低,并能實(shí)現(xiàn)高頻開關(guān)。此外,高性能主體二極管支持更高可靠性的諧振轉(zhuǎn)換器應(yīng)用,而較小的輸出電容使LLC轉(zhuǎn)換器實(shí)現(xiàn)零電壓導(dǎo)通變得更為容易。
另一方面,SiC對比硅器件(額定650V)在尺寸/重量上也具有獨(dú)特優(yōu)勢。通常,硅器件還需要一個(gè)變壓器和諧振電感,而SiC配置可以整合變壓器/電感,將可節(jié)省了重量和空間。
Wolfspeed SiC器件系列可適應(yīng)于應(yīng)用的所有功率范圍,范圍從1千瓦到兆瓦不等,也可用于大功率模塊。Wolfspeed系列也有低階的離散式解決方案、中功率級別的WolfPACK模塊和高階的大功率模塊解決方案,設(shè)計(jì)人員可以在降低BOM成本和優(yōu)化實(shí)體尺寸/布局的同時(shí),選擇多種不同的拓?fù)洹?/p>
Wolfspeed還提供了多種拓?fù)涞膮⒖荚O(shè)計(jì)和評估工具套件,如AC/DC功率因子校正、降壓型/升壓型DC/DC、高頻DC/DC和雙向AC/DC、DC/DC和DC/AC工具套件。此外,SpeedFit設(shè)計(jì)仿真器有助于仿真系統(tǒng)級電路的特征,為通用拓?fù)浣⒛P?,并為你的?yīng)用選擇合適的SiC器件。
無論是使用獨(dú)立式模塊還是大功率模塊,從住宅到工業(yè)的儲(chǔ)能應(yīng)用,SiC都顯示出了巨大的商機(jī),Wolfspeed的產(chǎn)品組合/資源可以在確保低成本、小空間的同時(shí)實(shí)現(xiàn)最靈活、可擴(kuò)展、高性能的設(shè)計(jì),將會(huì)是您在開發(fā)電源應(yīng)用時(shí)最佳的選擇之一。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進(jìn)行處理。
推薦閱讀:
安森美引領(lǐng)行業(yè)的Elite Power仿真工具和PLECS模型自助生成工具的技術(shù)優(yōu)勢
聊一聊智慧農(nóng)業(yè)中,那些風(fēng)格迥異的傳感技術(shù)