【導(dǎo)讀】使用電位器可以很方便在信號(hào)源的驅(qū)動(dòng)下形成一個(gè)幅值可以調(diào)節(jié)的交流信號(hào)源。這比起使用通常的可編程直流電源,或者DAC輸出電壓來(lái)說(shuō),輸出的是幅度可以變的交流信號(hào)源,可以用于很多的自動(dòng)測(cè)量環(huán)節(jié)。
01緣起
1.為什么討論電子電位器?
為什么要討論使用一個(gè) DAC[1]來(lái)作為一個(gè)電位器呢?這里面主要原因如下:
● 使用電位器可以很方便在信號(hào)源的驅(qū)動(dòng)下形成一個(gè)幅值可以調(diào)節(jié)的交流信號(hào)源。這比起使用通常的可編程直流電源,或者DAC輸出電壓來(lái)說(shuō),輸出的是幅度可以變的交流信號(hào)源,可以用于很多的自動(dòng)測(cè)量環(huán)節(jié)。
● 為什么不直接使用 機(jī)械電位器[2]來(lái)改變信號(hào)源的幅值呢?還是一個(gè)原因,那就是自動(dòng)可編程改變信號(hào)的幅值。
● 現(xiàn)在有數(shù)字電位器,比如 X9C102,X9C103,X9C104[3],AD5272等,為什么不使用它們來(lái)實(shí)現(xiàn)對(duì)交流信號(hào)源進(jìn)行幅值改變呢?這里面一個(gè)主要原因就是器件的頻帶寬度[4](https://zhuoqing.blog.csdn.net/article/details/104134132 "X9C102,X9C103,X9C104"),AD5272等,為什么不使用它們來(lái)實(shí)現(xiàn)對(duì)交流信號(hào)源進(jìn)行幅值改變呢?這里面一個(gè)主要原因就是器件的頻帶寬度[^4068]的問(wèn)題。相比于機(jī)械電位器,這些電子電位器(變阻器)都具有相對(duì)較窄的工作頻帶寬度,對(duì)于高頻信號(hào)不適合。
2.為什么使用DAC做電位器?
● DAC用作電位器改變交流信號(hào)原理;
● 使用DAC來(lái)分壓交流信號(hào)的優(yōu)點(diǎn)是什么?
● 是否能夠克服前面數(shù)字電位器的頻帶過(guò)窄的問(wèn)題?
寫(xiě)這些話的時(shí)候,我還不知道具體答案,下面就通過(guò)實(shí)驗(yàn)來(lái)驗(yàn)證一下吧。
02實(shí)驗(yàn)電路
最近,剛剛購(gòu)買(mǎi)了幾片16bit的DAC芯片 DAC8830IDR[5](價(jià)格6.6),具有SPI接口,基于該DAC來(lái)驗(yàn)證一下前面的思路的可行性。
1.實(shí)驗(yàn)電路設(shè)計(jì)
由于DAC8830使用SPI接口來(lái)設(shè)置輸出電壓,使用STC8G1K(SOP16)作為控制器來(lái)完成對(duì)它的信號(hào)控制。
1)SCH [6]
▲ 原理圖設(shè)計(jì)
2)PCB
對(duì)于實(shí)驗(yàn)原理圖進(jìn)行LAYOUT,盡可以滿足單面PCB板制作的工藝要求??焖僦瓢嬷蟮玫綄?duì)應(yīng)的實(shí)驗(yàn)電路板。
▲ 實(shí)驗(yàn)電路板的PCB設(shè)計(jì)
2.MCU軟件編程[7]
1) DA8830訪問(wèn)子程序
使用STC8G的SPI端口對(duì)DA8830進(jìn)行訪問(wèn)。根據(jù)DA8830的SPI讀寫(xiě)時(shí)序,相應(yīng)的DAC8830寫(xiě)入轉(zhuǎn)換(16bit)數(shù)據(jù)的子程序?yàn)椋?/div>
void DAC8830Set(unsigned int nDAC) {
OFF(DAC8830_CS);
SPISendChar((unsigned char)(nDAC >> 8));
SPISendChar((unsigned char)nDAC);
ON(DAC8830_CS);
}
▲ DA8830的SPI讀寫(xiě)時(shí)序
對(duì)應(yīng)的DA8830的CS,SPK的波形為:
▲ 示波器觀察到DA8830的CS,CLK的波形
從上面波形可以看出,DAC8830Set()函數(shù)的執(zhí)行時(shí)間在STC8G1K17(35MHz)執(zhí)行中的時(shí)間大約為。
在靜態(tài)下,通過(guò)兩個(gè)電阻組成的參考電壓分壓電路,生成大約2.5V的參考電壓。實(shí)際測(cè)量電壓為:。
根據(jù)DA8830數(shù)據(jù)手冊(cè),DAC8830的參考電壓輸入阻抗大約為:。因此,理論計(jì)算所得到的參考電壓為:
這個(gè)數(shù)值比起前面實(shí)際測(cè)量得到的要大,這說(shuō)明對(duì)應(yīng)的DA8830的參考電壓管腳的阻抗比起還要小。
為了便于測(cè)量數(shù)據(jù)波形,調(diào)用DA8830Set()函數(shù)中的輸入?yún)?shù)為。那么輸出電壓計(jì)算值應(yīng)該為:
實(shí)際測(cè)量DA8830的輸出電壓為:。
2) 輸出電壓波形
▲ 每1ms寫(xiě)入DAC8830遞增數(shù)據(jù)的CS,DI數(shù)據(jù)波形
寫(xiě)入遞增的數(shù)據(jù),輸出波形。
for(;;) {
WaitTime(1);
//----------------------------------------------------------------------
DAC8830Set(nShowCount);
nShowCount += 0x200;
//----------------------------------------------------------------------
}
此時(shí)Dout輸出遞增的鋸齒波形。
▲ 輸出遞增的鋸齒波形
03參考電壓與輸出信號(hào)
下面經(jīng)過(guò)幾組實(shí)驗(yàn),來(lái)驗(yàn)證DAC的參考電壓對(duì)于輸出信號(hào)的影響。
1.參考電壓的有效范圍
在DAC8830的數(shù)據(jù)手冊(cè)中,對(duì)于參考電壓的輸入范圍給定的是1.25V ~ Vpp。下面通過(guò)一組實(shí)驗(yàn)來(lái)測(cè)試實(shí)際的有效輸入?yún)⒖茧妷悍秶?/div>
下面通過(guò)在某一給定的DAC8830的設(shè)置下,給定Vref,測(cè)量對(duì)應(yīng)的實(shí)際輸出。將三種不同設(shè)置下的輸出電壓與參考電壓之間的關(guān)系繪制在一起。從圖中可以看到,實(shí)際上,DA8830的參考電壓對(duì)于輸出電壓的等比例的影響范圍是在整個(gè)的工作電壓(0~5V)之內(nèi)都有效。
▲ 將三種不同設(shè)置下的參考電壓與輸出電壓繪制在一起
2.輸入交變的參考電壓
1)在Vref加入交流電壓波形
在Vref中加入100Hz左右正弦波,設(shè)置DAC8830轉(zhuǎn)換值為0x7fff,輸出的電壓波形如下圖所示??梢钥吹捷敵觯˙lue)的電壓波形等于Vref(Cyan)的一半。
▲ DAC8830的Dout(Cyan)與Vref(Blue)的波形
當(dāng)設(shè)置為0xffff的時(shí)候,輸入的波形就與輸入一致了。
▲ DAC8830的Dout(Cyan)與Vref(Blue)的波形
2)輸入高頻方波波形
為了測(cè)試從Vref到Vout之間的頻帶寬度,在Vref中加入高頻方波信號(hào),觀察輸出的Vout的信號(hào)。
▲ 加入高頻方波信號(hào)Vref(Blue)觀察輸出信號(hào)Vout(Cyan)
將波形再次展開(kāi),觀察輸出的過(guò)渡過(guò)程。
展開(kāi)波形,對(duì)比輸入輸出波形,可以觀察到Vref到Vout之間的帶寬應(yīng)該超過(guò)1MHz。按照DAC8830數(shù)據(jù)手冊(cè)上關(guān)于參考電壓 -3dB帶寬的參數(shù),典型值為1.3MHz。
▲ 加入高頻方波信號(hào)Vref(Blue)與輸出信號(hào)Vout(Cyan)波形
3.使用DAC對(duì)交流信號(hào)進(jìn)行調(diào)幅
下面將固定的交流電壓(有直流分量,使得信號(hào)始終大于零)施加在Vref,測(cè)量Vout隨著DAC8830的設(shè)置值的變化情況。
施加的電壓頻率,幅值。
輸出電壓值如設(shè)置數(shù)值之間的關(guān)系為:
▲ 輸出電壓值與設(shè)置值之間的關(guān)系
可以看到整體上輸出與設(shè)置值之間的關(guān)系呈現(xiàn)非常好的線性關(guān)系。
注意到在曲線的一開(kāi)始似乎有一些略微的非線性。下面重新采集設(shè)置值范圍在(0,0x3ff)范圍內(nèi)的輸出電壓與設(shè)置值之間的關(guān)系曲線。
▲ 輸出電壓值與設(shè)置值之間的關(guān)系
可以看到在起始的時(shí)候,由于系統(tǒng)存在噪聲,使得輸出的電流電壓與設(shè)定值之間存在一定的非線性。當(dāng)理論輸出電壓小于系統(tǒng)地線上的噪聲電壓時(shí),使用交流萬(wàn)用表測(cè)量得到的數(shù)值就會(huì)偏大。
下面重新對(duì)頻率為的信號(hào)測(cè)量輸出電壓與設(shè)定值之間的關(guān)系。結(jié)果與1kHz的情形相同。只是輸出整體的增益下降了。
▲ 輸出電壓值與設(shè)置值之間的關(guān)系
增益變化了9%左右。
4.信號(hào)超量程
當(dāng)輸入信號(hào)的幅值超過(guò)DAC8830d的工作電壓,或者低于0V,輸出都會(huì)出現(xiàn)截止。
▲ 輸入信號(hào)超過(guò)+5V,低于0V的情況
結(jié)論
通過(guò)前面的實(shí)驗(yàn),可以看到,使用DAC8830來(lái)當(dāng)做電位器獲得幅度可變的交流信號(hào)源是可行的。它具有很寬的信號(hào)帶寬,并且輸出信號(hào)的幅值與設(shè)置信號(hào)之間具有非常好的線性關(guān)系,只是在信號(hào)比較小的時(shí)候輸出會(huì)受到系統(tǒng)和芯片本身的噪聲影響。
當(dāng)輸入信號(hào)超出了DAC8830的工作電壓,或者低于0V時(shí),輸出信號(hào)都會(huì)截止。所以在使用的時(shí)候,需要通過(guò)一定的信號(hào)偏置的方式將交流信號(hào)平移到始終在0~5V(DAC8830工作電壓)范圍之后進(jìn)行調(diào)試,然后可以再通過(guò)隔直電容去掉信號(hào)中的偏移量。
參考資料
[1] DAC: https://baike.baidu.com/item/%E6%95%B0%E6%A8%A1%E8%BD%AC%E6%8D%A2%E5%99%A8/4634384?fromtitle=DAC&fromid=1196661&fr=aladdin
[2] 機(jī)械電位器: https://zhuoqing.blog.csdn.net/article/details/104089780
[3] X9C102,X9C103,X9C104: https://zhuoqing.blog.csdn.net/article/details/104134132
[4] 頻帶寬度: 器件的輸出增益隨著信號(hào)頻率的改變而下降,最終形成的最大等效輸出帶寬
推薦閱讀:
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計(jì)
- ADI電機(jī)運(yùn)動(dòng)控制解決方案 驅(qū)動(dòng)智能運(yùn)動(dòng)新時(shí)代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 中微公司成功從美國(guó)國(guó)防部中國(guó)軍事企業(yè)清單中移除
- 華邦電子白皮書(shū):滿足歐盟無(wú)線電設(shè)備指令(RED)信息安全標(biāo)準(zhǔn)
- 功率器件熱設(shè)計(jì)基礎(chǔ)(九)——功率半導(dǎo)體模塊的熱擴(kuò)散
- 準(zhǔn) Z 源逆變器的設(shè)計(jì)
- 第12講:三菱電機(jī)高壓SiC芯片技術(shù)
技術(shù)白皮書(shū)下載更多>>
- 車(chē)規(guī)與基于V2X的車(chē)輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車(chē)安全隔離的新挑戰(zhàn)
- 汽車(chē)模塊拋負(fù)載的解決方案
- 車(chē)用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門(mén)搜索
單向可控硅
刀開(kāi)關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點(diǎn)膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動(dòng)車(chē)
電動(dòng)工具
電動(dòng)汽車(chē)
電感
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險(xiǎn)絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖