設(shè)計開關(guān)電源中使用的二級輸出濾波器
發(fā)布時間:2017-12-05 來源:Kevin Tompsett 責(zé)任編輯:wenwei
【導(dǎo)讀】實踐證明,在很多應(yīng)用中,經(jīng)過適當(dāng)濾波的開關(guān)轉(zhuǎn)換器可以代替線性穩(wěn)壓器從而產(chǎn)生低噪聲電源。哪怕在要求極低噪聲電源的苛刻應(yīng)用中,上游電源樹的某個地方也有可能存在開關(guān)電路。因此,有必要設(shè)計經(jīng)過優(yōu)化和阻尼處理的多級濾波器,來消除開關(guān)電源轉(zhuǎn)換器的輸出噪聲。此外,了解濾波器設(shè)計如何影響開關(guān)電源轉(zhuǎn)換器的補償也很重要。
最近,開關(guān)電源幾乎用于所有電子設(shè)備中。它們由于尺寸小、成本低和效率高而具有極高的價值。但是,它們最大的缺點就是高開關(guān)瞬態(tài)導(dǎo)致高輸出噪聲。這個缺點使它們無法用于以線性穩(wěn)壓器供電為主的高性能模擬電路中。
本文示例電路將采用升壓轉(zhuǎn)換器,但結(jié)果可以直接應(yīng)用于任意DC-DC轉(zhuǎn)換器。圖1所示為升壓轉(zhuǎn)換器在恒定電流模式(CCM)下的基本波形。
圖1. 升壓轉(zhuǎn)換器的基本電壓和電流波形
輸出濾波器對升壓拓撲或其它任何帶有斷續(xù)電流模式的拓撲之所以重要,是因為它在開關(guān)B內(nèi)電流具有快速上升和下降時間。這會導(dǎo)致激勵開關(guān)、布局和輸出電容中的寄生電感。其結(jié)果是,在實際使用中,輸出波形看上去更像圖2而非圖1,哪怕布局布線良好并且使用陶瓷輸出電容。
圖2. DCM中升壓轉(zhuǎn)換器的典型測量波形
由于電容電荷的變化而導(dǎo)致的開關(guān)紋波(開關(guān)頻率)相比輸出開關(guān)的無阻尼振鈴而言非常小,下文稱為輸出噪聲。一般而言,此輸出噪聲范圍為10 MHz至100 MHz以上,遠超出大部分陶瓷輸出電容的自諧振頻率。因此,添加額外的電容對噪聲衰減的作用不大。
還有很多各類濾波器適合對此輸出濾波。本文將解釋每一種濾波器,并給出設(shè)計的每一個步驟。文中的公式并不嚴(yán)謹,且做了一些合理的假設(shè),以便一定程度上簡化這些公式。仍然需要進行一些迭代,因為每一個元件都會影響其它元件的數(shù)值。ADIsimPower設(shè)計工具利用元件值(比如成本或尺寸)的線性化公式在實際選擇元件前進行優(yōu)化,然后從成千上萬器件的數(shù)據(jù)庫中選出實際元件后對其輸出進行優(yōu)化,從而避免了這個問題。但在剛開始進行設(shè)計時,這種程度的復(fù)雜性是沒有必要的。通過提供的計算公式,使用SIMPLIS仿真器——比如免費的ADIsimPE™——或者在實驗室工作臺上花費一些時間,就能以最少的精力得到滿意的設(shè)計。
開始設(shè)計濾波器前,考慮一下單級濾波器RC或LC濾波器可以做什么。通常采用二級濾波器可以合理地將紋波抑制到幾百μV p-p范圍內(nèi),并將開關(guān)噪聲抑制在1 mV p-p 以下。降壓轉(zhuǎn)換器噪聲較低,因為電源電感提供了很好的濾波能力。這些限制是因為,一旦紋波降低至μV級別,元件寄生和濾波器級之間的噪聲耦合便開始成為限制因素。如果使用噪聲更低的電源,則需添加三級濾波器。然而,開關(guān)電源的基準(zhǔn)電壓源一般不是噪聲最低的元件,并且常常受到抖動噪聲的影響。這些都導(dǎo)致了低頻噪聲(1 Hz至100 kHz),通常不易濾除。因此,對于極低噪聲電源而言,使用單個二級濾波器然后在輸出端添加一個LDO可能更合適。
在更詳細地介紹各類濾波器的設(shè)計步驟前,部分在設(shè)計步驟中使用的各類濾波器的數(shù)值定義如下:
進入輸出濾波器的峰峰值電流近似值。為方便計算,假定是正弦信號。數(shù)值取決于拓撲。對于降壓轉(zhuǎn)換器而言,它是電感中的峰峰值電流。對于升壓轉(zhuǎn)換器而言,它是開關(guān)B(通常是一個二極管)中的峰值電流。
轉(zhuǎn)換器開關(guān)頻率處的輸出電壓紋波近似值。
所選輸出電容的ESR。
轉(zhuǎn)換器開關(guān)頻率。
輸出電容的計算中,假定所有流入其中。
施加于輸出時,的變化。
輸出負載的瞬時變化。
轉(zhuǎn)換器對于輸出負載瞬時變化的近似響應(yīng)時間。
轉(zhuǎn)換器的交越頻率。對于降壓轉(zhuǎn)換器而言,其值通常為對于升壓或降壓/升壓轉(zhuǎn)換器而言,它通常位于右半平面零點(RHPZ)約1/3位置處。
最簡單的濾波器類型為RC濾波器,如圖3中基于低電流ADP161x升壓設(shè)計的輸出端所連接的那樣。該濾波器具有低成本優(yōu)勢,無需阻尼。但是,由于功耗的原因,它僅對極低輸出電流轉(zhuǎn)換器有用。本文假定陶瓷電容具有較低ESR。
圖3. 在輸出端添加RC濾波器的ADP161x低輸出電流升壓轉(zhuǎn)換器設(shè)計
RC二級輸出濾波器設(shè)計步驟
第1步:根據(jù)以下條件選擇:假設(shè)的輸出紋波近似值可以忽略其余濾波器;5 mV p-p至20 mV p-p就是一個很好的選擇。隨后可通過公式1計算得出。
第2步:R可以根據(jù)功耗選擇。R必須遠大于電容和這個濾波器才能起作用。這將輸出電流的范圍限制在50 mA以下。
第3步:隨后可通過公式2至公式6計算得出。A、a、b和c是簡化計算的中間值,沒有實際意義。這些公式假定且每個電容的ESR較小。這些都是很好的假設(shè),引入的誤差很小。應(yīng)等于或大于。可調(diào)節(jié)第1步中的紋波,使其成為可能。
對于較高電流電源而言,將pi濾波器中的電阻以如圖4中的電感代替是有好處的。這種配置提供了極佳的紋波和開關(guān)噪聲抑制能力,并具有較低的功耗。問題在于,我們現(xiàn)在引入了一個額外的儲能電路,它可能產(chǎn)生諧振。這就有可能導(dǎo)致振蕩,使電源不穩(wěn)定。因此,設(shè)計該濾波器的第一步是如何選擇阻尼濾波器。圖4顯示了三種可行的阻尼技術(shù)。添加具有額外成本和尺寸增加較少的優(yōu)勢。阻尼電阻的損耗通常很少(甚至沒有),哪怕大電源情況下都很小。缺點是,它會降低電感的并聯(lián)阻抗,從而大幅降低濾波器的有效性。第二種技術(shù)的優(yōu)勢是濾波器性能最大化。如果需要采用全陶瓷設(shè)計,則可以是與陶瓷電容串聯(lián)的分立式電阻。否則需使用具有高ESR且物理尺寸較大的電容。這個額外的電容會大幅增加設(shè)計的成本和尺寸。阻尼技術(shù)3看上去具有極大的優(yōu)勢,因為阻尼電容添加至輸出端,它可能對瞬態(tài)響應(yīng)和輸出紋波性能有所助益。然而,這種技術(shù)成本最高,因為所需電容數(shù)量極大。此外,輸出端相對而言較多的電容會降低濾波器諧振頻率,進而減少轉(zhuǎn)換器可實現(xiàn)的帶寬——因此不建議使用第3種技術(shù)。對于ADIsimPower設(shè)計工具來說,我們采用第1種技術(shù),因為它成本較低,且在自動化設(shè)計步驟中相對來說較為容易實現(xiàn)。
圖4. 采用輸出濾波器并突出多種不同阻尼技術(shù)的ADP1621
需注意的另一個問題是補償。盡管這可能不符合直覺,但把濾波器放在反饋環(huán)路內(nèi)部幾乎一直都是更好的做法。這是因為,將其放在反饋環(huán)路內(nèi)有助于在一定程度上抑制濾波器,消除直流負載偏移和濾波器的串聯(lián)電阻,同時能提供更好的瞬態(tài)響應(yīng)、更低的振鈴。圖5顯示了一個升壓轉(zhuǎn)換器的波特圖,其在輸出端添加了LC濾波器輸出。
圖5. 輸出端帶LC濾波器的升壓轉(zhuǎn)換器
反饋在濾波器電感之前或之后獲取。人們沒有想到的是,哪怕濾波器不在反饋環(huán)路內(nèi)部,開環(huán)波特圖依然存在非常大的變化。由于控制環(huán)路無論濾波器是否在反饋環(huán)路中都會受影響,因此也應(yīng)對其進行適當(dāng)補償。一般而言,這意味著將目標(biāo)交越頻率向下調(diào)整至不超過濾波器諧振頻率的五分之一到十分之一。
這類濾波器的設(shè)計步驟本質(zhì)上是一個迭代過程,因為每一個元件的選擇都會影響其它元件的選擇。
使用并聯(lián)阻尼電阻的LC濾波器設(shè)計步驟(圖4中的第1種技術(shù))
第1步:選擇,使其等于輸出端沒有輸出濾波器時的情況。5 mV至20 mV p-p是一個很好的開端。隨后可通過公式8計算得出。
第2步:選擇電感根據(jù)經(jīng)驗,較好的數(shù)值范圍為0.5 μF至2.2 μF。應(yīng)按照高自諧振頻率(SRF)來選擇電感。較大的電感具有較大的SRF,這意味著它們的高頻噪聲濾波效率較差。較小的電感對紋波的影響沒有那么大,需要更多電容。開關(guān)頻率越高,電感值越小。比較電感值相同的兩個電感時,SRF較高的器件具有較低的繞組間電容。繞組間電容用作濾波器周圍的短路,作用于高頻噪聲。
第3步:如前所述,添加濾波器會影響轉(zhuǎn)換器補償,具體表現(xiàn)為降低可實現(xiàn)的交越頻率(Fu)。根據(jù)公式7的計算,對于電流模式轉(zhuǎn)換而言,可實現(xiàn)的最大Fu是開關(guān)頻率的1/10以下,或者是濾波器的1/5以下。幸運的是,大部分模擬負載不需要太高的瞬態(tài)響應(yīng)。公式9計算轉(zhuǎn)換器輸出所需的輸出電容近似值以提供指定的瞬態(tài)電流階躍。
第5步:利用公式10和公式11計算阻尼濾波器電阻近似值。這些公式并非絕對精確,但它們是不使用泛代數(shù)的最接近的閉式解決方案。ADIsimPower設(shè)計工具通過計算轉(zhuǎn)換器在濾波器和電感短路時的開環(huán)傳遞函數(shù)(OLTF)從而計算值為猜測值,直到濾波器僅為轉(zhuǎn)換器OLTF以上10 dB時轉(zhuǎn)換器OLTF的峰值(電感短路)。這種技術(shù)可用于ADIsimPE等仿真器中,或用于使用頻譜分析儀的實驗室中。
第6步:現(xiàn)在可以通過公式12至公式15計算得出。a、b、c和d用于簡化公式16。
第7步:應(yīng)重復(fù)第3步至第5步,直至計算出滿足所需紋波和瞬態(tài)規(guī)格的優(yōu)秀阻尼濾波器設(shè)計。應(yīng)注意,這些公式忽略了濾波器電感的直流串聯(lián)電阻對于較低的電源電流而言,該電阻可能非常大。它通過幫助抑制濾波器而改善了濾波器性能,增加了所需的同時也增加了濾波器阻抗。這兩個效應(yīng)都會極大地改善濾波器性能。因此,以中的少量功耗換來低噪聲性能是很劃算的,這樣可以改善噪聲性能。中的內(nèi)核損耗還有助于衰減部分高頻噪聲。因此,高電流供電的鐵磁芯是一個很好的選擇。它們在電流能力相同的情況下尺寸更小、成本更低。當(dāng)然,ADIsimPower具有濾波器電感電阻值以及兩個電容的ESR值,可實現(xiàn)最高精度。
第8步:選擇實際的元件來匹配計算值時,注意需對任意陶瓷電容進行降低額定值處理,以便將直流偏置納入考量中!
如前文所述,圖4給出了抑制濾波器的兩種可行技術(shù)。如果未選擇并聯(lián)電阻,那么可以選擇來抑制濾波器。這會增加一些成本,但相比其它任何技術(shù)它能提供最佳的濾波器性能。
使用RC阻尼網(wǎng)絡(luò)的LC濾波器設(shè)計步驟(圖4中的第2種技術(shù))
第1步:正如之前的拓撲,選擇,使其等于沒有輸出濾波器時的情況。10 mV p-p至100 mV p-p是個不錯的開始,具體取決于最終目標(biāo)輸出紋波。隨后可通過公式8計算得出。在這個拓撲中可以采用比之前拓撲更小的數(shù)值,因為濾波器效率更高。
第2步:在之前的拓撲中,選擇數(shù)值為0.5 μH至2.2 μH的電感。對于500 kHz至1200 kHz的轉(zhuǎn)換器而言,1 μH是一個很好的數(shù)值。
第3步:與前文相同,可以從公式16中選擇,但應(yīng)設(shè)為較大的值,比如1 MΩ,因為不會安裝該元件。無論是否有額外 的電容,它的值不變的原因是,為了提供良好的阻尼,會足夠大,以至于不會過多地降低紋波。將設(shè)為、計算得出的最小值。此時回到第1步并調(diào)節(jié)上的紋波會很有用,這樣計算得到的近似等于。
第4步:的值應(yīng)當(dāng)?shù)扔?img src="/editorfiles/20171204135752_2293.png" alt="設(shè)計開關(guān)電源中使用的二級輸出濾波器" width="16" height="15" />。理論上,使用更大的電容可以實現(xiàn)濾波器的更多抑制,但它不必要地增加了成本和尺寸,并且會降低轉(zhuǎn)換器帶寬。
第5步:可以通過公式17計算得出。通過公式7計算得出,忽略。這是一個很好的近似,因為通常足夠大,從而幾乎不影響濾波器諧振位置。
第6步:現(xiàn)在,和都已算出,可以使用帶有串聯(lián)電阻的陶瓷電容,或者選擇帶有大ESR的鉭電容或類似電容來滿足計算得出的規(guī)格。
第7步:選擇實際的元件來匹配計算值時,注意需對任意陶瓷電容進行降低額定值處理,以便將直流偏置納入考量中!
另一種濾波器技術(shù)是以鐵氧體磁珠代替之前濾波器中的L。但是,這種方案有很多缺點,它限制了開關(guān)噪聲濾波的有效性,而對開關(guān)紋波幾乎沒有好處。首先是飽和。鐵氧體磁珠將在極低的偏置電流電平處飽和,這意味著鐵氧體會比所有數(shù)據(jù)手冊中零偏置曲線所表示的都要低得多。它可能依然需要抑制,因為它仍然是一個電感,因此會跟隨輸出電感諧振。但現(xiàn)在電感是一個變量,而且以大部分數(shù)據(jù)手冊所能提供的極少量數(shù)據(jù)進行極差的特性化。由于這個原因,不建議使用鐵氧體磁珠作為二級濾波器,但可以用在下游以進一步降低極高的頻率噪聲。
結(jié)論
本文提供了多種開關(guān)電源輸出濾波器技術(shù)。本文為每一個拓撲提供了逐步驟的設(shè)計過程,縮短猜測時間并減少濾波器設(shè)計中的檢查。文中的公式都在一定程度上經(jīng)過了簡化,工程師可以通過了解二級輸出濾波器可以達到的程度而實現(xiàn)快速設(shè)計。
本文轉(zhuǎn)載自亞德諾半導(dǎo)體。
推薦閱讀:
特別推薦
- AMTS 2025展位預(yù)訂正式開啟——體驗科技驅(qū)動的未來汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽能和儲能解決方案
- 功率器件熱設(shè)計基礎(chǔ)(六)——瞬態(tài)熱測量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進入量產(chǎn)
- 中微半導(dǎo)推出高性價比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級分流器以及匹配的評估板
- 功率器件熱設(shè)計基礎(chǔ)(八)——利用瞬態(tài)熱阻計算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索