一種用于測量ADC轉(zhuǎn)換誤差率的測試方法
發(fā)布時(shí)間:2017-05-27 來源:Snehal Prabhu,Ian Beavers 責(zé)任編輯:wenwei
【導(dǎo)讀】犯錯(cuò)乃人之常情。但對(duì)于系統(tǒng)的模數(shù)轉(zhuǎn)換器(ADC),我們能夠提出什么樣的要求呢?我們將回顧轉(zhuǎn)換誤差率(CER)測試的范圍和高速ADC的分析。取決于采樣速率和所需的目標(biāo)限值,ADC CER測量過程可能需要數(shù)周或數(shù)月時(shí)間。為實(shí)現(xiàn)高置信度(CL),出現(xiàn)首次錯(cuò)誤之后常常還需要進(jìn)行測試(Redd,2000)。對(duì)于那些要求低轉(zhuǎn)換誤差率的系統(tǒng),需要付出努力來詳盡地予以量化。一切完成后,我們便能確定高置信度的誤差率—優(yōu)于10–15。
許多實(shí)際高速采樣系統(tǒng),如電氣測試與測量設(shè)備、生命系統(tǒng)健康監(jiān)護(hù)、雷達(dá)和電子戰(zhàn)對(duì)抗等,不能接受較高的ADC轉(zhuǎn)換誤差率。這些系統(tǒng)要在很寬的噪聲頻譜上尋找極其罕見或極小的信號(hào)。誤報(bào)警可能會(huì)引起系統(tǒng)故障。因此,我們必須能夠量化高速ADC轉(zhuǎn)換誤差率的頻率和幅度。
CER與BER
首先,讓我們理清誤差率描述中的兩大差異。轉(zhuǎn)換誤差率(CER)通常是ADC關(guān)于模擬電壓采樣的判斷不正確的結(jié)果,因此,與轉(zhuǎn)換器輸入的滿量程范圍相比較,其相應(yīng)的數(shù)字碼也不正確。ADC的誤碼率(BER)也能描述類似的誤差,但就我們的討論而言,我們把BER定義為純數(shù)字接收錯(cuò)誤;如果沒有這種錯(cuò)誤,那么轉(zhuǎn)換的碼數(shù)據(jù)就是正確的。這種情況下,正確的ADC數(shù)字輸出未能被FPGA或ASIC等下游邏輯器件正確接收到。代碼出錯(cuò)的程度及其出現(xiàn)的頻率就是本文余下部分要討論的內(nèi)容。
僅僅閱讀數(shù)據(jù)手冊中的技術(shù)參數(shù),可能難以掌握ADC轉(zhuǎn)換誤差。使用轉(zhuǎn)換器數(shù)據(jù)手冊中的單個(gè)數(shù)據(jù),當(dāng)然可以對(duì)轉(zhuǎn)換誤差率進(jìn)行某種估計(jì),但該數(shù)據(jù)量化的到底是什么呢?您無從判斷多大的樣本偏差可被視為錯(cuò)誤,無法確定試驗(yàn)測量或仿真的置信度。必須將“錯(cuò)誤”定義限定在已知出現(xiàn)頻率所對(duì)應(yīng)的幅度以內(nèi)。
誤差源
有多種誤差源會(huì)造成ADC轉(zhuǎn)換錯(cuò)誤,內(nèi)部和外部均有。外部誤差源包括系統(tǒng)電源毛刺、接地反彈、異常大的時(shí)鐘抖動(dòng)和可能有錯(cuò)的控制命令。ADC數(shù)據(jù)手冊中的建議和應(yīng)用筆記通常會(huì)說明避開這些外部問題的最佳系統(tǒng)布局做法。ADC內(nèi)部誤差源主要可歸因于亞穩(wěn)態(tài)(Beavers,2014)或模擬域中各級(jí)之間的殘余處理傳遞,以及數(shù)字域和物理層中的輸出時(shí)序誤差。ADC設(shè)計(jì)團(tuán)隊(duì)在器件開發(fā)過程中必須分析這些挑戰(zhàn)。
圖1. 對(duì)于滿量程上模擬分辨率的各個(gè)位,理想ADC樣本都有單一數(shù)字輸出(左圖)。實(shí)際ADC輸出行為的一個(gè)例子(右圖)顯示了與內(nèi)部和外部噪聲相關(guān)的某種模糊性。
在一組比較器中,當(dāng)比較器基準(zhǔn)電壓精確等于或極其接近待比較的電壓時(shí),便可能發(fā)生亞穩(wěn)態(tài)狀況(Kester,2006)。比較電壓在幅度上越接近基準(zhǔn)電壓,比較器作出全面判斷所需的時(shí)間就越長。如果二者之間的電壓差非常小或?yàn)?,比較器可能沒有足夠的時(shí)間來最終判定比較電壓是高于還是低于基準(zhǔn)電壓。當(dāng)該樣本的轉(zhuǎn)換完成時(shí),比較器輸出可能處于亞穩(wěn)第三態(tài),而不是清晰地判定一個(gè)有效邏輯輸出1或0 (Kester,2006)。這種猶豫不定會(huì)波及整個(gè)ADC,可能引起轉(zhuǎn)換錯(cuò)誤。
圖2. 對(duì)于滿量程上模擬分辨率的各個(gè)位,理想ADC樣本都有單一數(shù)字輸出(左圖)。實(shí)際ADC輸出行為的一個(gè)例子(右圖)顯示了與內(nèi)部和外部噪聲相關(guān)的某種模糊性
在流水線型ADC架構(gòu)中,還有其他潛在轉(zhuǎn)換誤差源,即在級(jí)間邊界傳遞處,殘余電壓從上一級(jí)傳送到下一級(jí)。例如,若兩級(jí)之間有未校正的增益匹配誤差,則殘余電壓的傳遞會(huì)在后續(xù)級(jí)中產(chǎn)生誤差。此外,負(fù)責(zé)將一個(gè)電壓發(fā)送到下一ADC級(jí)的殘余DAC中的毛刺也可能在稍后的處理中引起意外的干擾誤差(Kester,2006)。任何無源元件中都存在的熱噪聲是所有ADC固有的噪聲分量,它決定了ADC處理的絕對(duì)噪底(Brannon,2003)。在詳細(xì)測定ADC的過程中,必須審視和量化所有這些可能的誤差源,確保轉(zhuǎn)換器運(yùn)行時(shí)沒有任何落差。
噪聲分量
折合到輸入端的噪聲是ADC轉(zhuǎn)換缺陷的一個(gè)固有分量,其中包括ADC輸入端的熱噪聲。常常利用ADC輸入端開路或浮空情況下的數(shù)字輸出碼直方圖來對(duì)其進(jìn)行量化。ADC數(shù)據(jù)手冊通常會(huì)說明并顯示此噪聲。下面的圖形給出了此噪聲幅度的例子,其在本例中為[N] ± 11。
圖3. 輸入端開路或浮空時(shí),理想ADC會(huì)采樣輸出一個(gè)中間電平失調(diào)碼,如左側(cè)直方圖所示。實(shí)際ADC會(huì)有折合到輸入端的噪聲,其在對(duì)數(shù)尺度上應(yīng)表現(xiàn)為高斯形狀的彎曲直方圖(右側(cè))。
ADC的積分非線性(INL)是ADC滿量程輸入范圍內(nèi)實(shí)際樣本編碼相對(duì)于理想輸出的傳遞函數(shù)(Kester,2005)。ADC數(shù)據(jù)手冊通常也會(huì)說明此信息并給出其曲線。與理想編碼的最大偏差通常用某一數(shù)量的LSB來表示。下面是INL曲線示例。雖然它反映了一定量的絕對(duì)誤差,但在大部分16位或稍低分辨率的高速ADC中,INL通常只有0到3個(gè)碼。它不是轉(zhuǎn)換器實(shí)際誤差率的主要貢獻(xiàn)因素。
圖4. INL曲線示例,在所有ADC編碼上測量,與理想樣本相比,最大誤差為±1 LSB或±1個(gè)碼,對(duì)ADC轉(zhuǎn)換誤差而言基本上可忽略不計(jì)。
測試方法
針對(duì)長期CER檢測,測試方法可以使用非常低的ADC輸入頻率(相對(duì)于時(shí)鐘速率而言)。在任何兩個(gè)相鄰樣本點(diǎn)之間構(gòu)成一條直線,正弦波斜率可近似為該直線的斜率。類似地,略高于采樣速率的輸入頻率會(huì)混疊為低頻。對(duì)于這種情況,有一個(gè)可預(yù)測的理想解決方案能讓各相鄰樣本處于前一樣本的±1個(gè)碼內(nèi)。輸入信號(hào)頻率和編碼采樣時(shí)鐘頻率必須鎖定,保持可預(yù)測的相位對(duì)齊。如果此相位不是恒定值,對(duì)齊就會(huì)異相,測量數(shù)據(jù)將沒有用處。因此,為了計(jì)算理想轉(zhuǎn)換結(jié)果,樣本(N + 1) – sample
(N)應(yīng)相差一個(gè)碼,幅度不超過1。
所有ADC固有的可預(yù)測小轉(zhuǎn)換誤差源包括積分非線性、輸入噪聲、時(shí)鐘抖動(dòng)和量化噪聲。所有這些噪聲貢獻(xiàn)都可以累加以獲得最差限值,若超過此限值,誤差將被視為來自兩個(gè)相鄰轉(zhuǎn)換樣本。16位ADC的輸出編碼數(shù)是12位轉(zhuǎn)換器的24或16倍。因此,該擴(kuò)展分辨率會(huì)影響用于限制轉(zhuǎn)換誤差率測試的編碼數(shù)。在其他一切都相同時(shí),16位ADC的限值將被12位ADC寬16倍??墒褂肁DC內(nèi)置自測(BIST)功能并根據(jù)熱噪聲、時(shí)鐘抖動(dòng)和其他系統(tǒng)非線性來確定誤差閾值。當(dāng)超過誤差限值時(shí),可在ADC內(nèi)核中標(biāo)記特定樣本及其對(duì)應(yīng)的樣本數(shù)和誤差幅度。使用內(nèi)部BIST的一大好處,是它將誤差源界定在ADC內(nèi)核本身,排除了專屬于數(shù)字?jǐn)?shù)據(jù)傳輸輸出的接收位錯(cuò)誤引起的誤差。一旦明確誤差閾值,便可執(zhí)行涉及ADC、鏈路以及FPGA或ASIC的完整系統(tǒng)測量,以便確定全分量CER。
圖5. ADC轉(zhuǎn)換誤差率與其熱噪聲的關(guān)系通常只能通過晶體管級(jí)電路仿真獲得。上圖為一個(gè)12位ADC的示例圖,要實(shí)現(xiàn)10–15的CER,其必須能承受8 Σ的熱噪聲。
現(xiàn)在看看如何計(jì)算熱噪聲貢獻(xiàn)(Brannon,2003)。
SNR = 20log(VSIGNAL/VNOISE)
VNOISE = VSIGNAL × 10^(–SNR/20)
為得出ADC的均方根噪聲,必須調(diào)整VFULLSCALE:
VNOISE = (VFULLSCALE/(2 × (2) × 10^(–SNR/20)
利用以下公式計(jì)算AD9625的熱噪聲限值,它是一款12位2.6 GSPS ADC,設(shè)計(jì)滿量程范圍(FSR)為1.1 V,SNR為55,2.508 MHz混疊輸入頻率。熱噪聲限值 = 8 × VINpp × 10 ^ (SNR/20)/2√(2) = 3.39 mV ~±12個(gè)碼。
本例中,對(duì)于10–15誤差限值,單單熱噪聲的8Σ分布就能貢獻(xiàn)最多±12個(gè)碼。這應(yīng)針對(duì)ADC的折合到輸入端總噪聲測量進(jìn)行測試。注意:數(shù)據(jù)手冊中的折合到輸入端噪聲可能不是基于足夠大的樣本規(guī)模(用于10–15測試)而測得的。折合到輸入端噪聲包含所有內(nèi)部噪聲源,包括熱噪聲。
為了明確界限以盡可能包含所有噪聲源,包括測試設(shè)備,我們使用內(nèi)部BIST來測量誤差幅度分布。利用AD9625的內(nèi)部BIST,以2.5 GSPS運(yùn)行,混疊AIN頻率為80 kHz,接近ADC滿量程,使用標(biāo)稱
電源和溫度條件執(zhí)行CER測量,為期20天。
假設(shè)模擬電壓轉(zhuǎn)換為數(shù)字表示的所有ADC處理都是理想的。數(shù)字?jǐn)?shù)據(jù)仍然需要精確傳輸,并在信號(hào)鏈的下游FPGA或ASIC中的下一級(jí)處理中精確接收。這一級(jí)的數(shù)字混亂通常由位錯(cuò)誤或誤碼率來定義。然而,ADC的數(shù)據(jù)眼圖輸出的綜合特性可以在PCB走線末端直接測量,并與JESD204B接收器眼罩比較,從而非常好地了解輸出質(zhì)量(Farrelly,Loberg 2013)1。
在1 Σ內(nèi)以2.6 GSPS運(yùn)行時(shí),為了確立10–15的CER,10的15次方個(gè)樣本,需要讓此測試連續(xù)運(yùn)行4.6天。對(duì)于更大的Σ,要確立更高的置信度,此測試需要運(yùn)行更長時(shí)間2。測試需要非常穩(wěn)定的
測試環(huán)境和干凈的電源。被測轉(zhuǎn)換器的電壓源如有任何毛刺未被抑制,將導(dǎo)致測量錯(cuò)誤,測試將不得不從頭再來。
可利用一個(gè)FPGA計(jì)數(shù)器來記錄兩個(gè)相鄰樣本的幅度差超過閾值的情況,把該樣本算作一次轉(zhuǎn)換錯(cuò)誤。計(jì)數(shù)器必須累計(jì)整個(gè)測試期間的錯(cuò)誤總數(shù)。為了確保系統(tǒng)的工作行為符合預(yù)期,誤差幅度和理想值也應(yīng)記錄在直方圖中。測試所需時(shí)間取決于采樣速率、期望的測試轉(zhuǎn)換誤差率和置信度要求。小于10–15的CER和95%的置信度至少需要連續(xù)測試14天。通過外推到實(shí)測值以外可以估計(jì)CER,但置信度會(huì)降低(Redd,2000)。
測量ADC的CER是一個(gè)破費(fèi)時(shí)間的過程,您可能會(huì)想,是否能夠基于已知測量結(jié)果進(jìn)行外推。好消息是可以這樣做。然而,有利必有弊,讀者要擦亮眼睛。當(dāng)我們不斷地利用這種方法對(duì)誤差率進(jìn)行合理的數(shù)學(xué)估計(jì)時(shí),估計(jì)的置信度會(huì)越來越低3。例如,若置信度不到1%,那么知道10–18的誤差率可能也沒有什么用。
對(duì)于任何給定樣本,轉(zhuǎn)換誤差閾值可能累計(jì)達(dá)到4或5個(gè)LSB。根據(jù)ADC分辨率、系統(tǒng)性能和應(yīng)用的誤差率要求,該值的大小可能略有不同。使用此誤差帶與理想值進(jìn)行比較后,超出此限值的樣本將被視為轉(zhuǎn)換錯(cuò)誤。ADC的誤差帶可通過調(diào)整閾值并監(jiān)視典型性能數(shù)據(jù)來測試。最后使用的測試限值為缺陷的均方根和,其中主要是ADC熱噪聲。
采樣值相對(duì)于理想值的測試數(shù)據(jù)直方圖類似于離散式泊松分布圖。泊松分布與二項(xiàng)式分布的主要區(qū)別在于,泊松分布沒有固定的試驗(yàn)次數(shù)。相反,它使用固定的時(shí)間或空間間隔,并記錄其中的成功次數(shù),這與上述CER測試方法相似。記錄到的任何樣本如超出根據(jù)理想值算得的誤差限值,就會(huì)被視為真正的碼錯(cuò)誤。
圖6. 利用ADC樣本與理想輸出碼相比較的長期直方圖,我們可以檢測任何超出計(jì)算限值的偏差。該直方圖類似于泊松分布圖。
系統(tǒng)
懂得單個(gè)轉(zhuǎn)換器的CER之后,我們便可計(jì)算一個(gè)包含許多轉(zhuǎn)換器的高級(jí)同步系統(tǒng)的誤差率。許多系統(tǒng)工程師會(huì)問:在一個(gè)使用大量ADC的大型復(fù)雜系統(tǒng)中,累積ADC轉(zhuǎn)換誤差率將是多少?
因此,對(duì)于高級(jí)多信號(hào)采集系統(tǒng),第二考慮事項(xiàng)就是確定一系列(而不是某一個(gè))轉(zhuǎn)換器的轉(zhuǎn)換誤差率。乍看之下,這似乎是一個(gè)令人怯步的任務(wù)。幸運(yùn)的是,測得或算得單個(gè)ADC的CER之
后,將此誤差率外推到多個(gè)ADC并不是那么困難。這樣,函數(shù)就變成基于系統(tǒng)所用轉(zhuǎn)換器數(shù)目的概率擴(kuò)張方程。
首先,求出單個(gè)轉(zhuǎn)換器不發(fā)生錯(cuò)誤的概率。它僅比1略小一點(diǎn),即1減去誤差率值(1–CERSINGLE)。其次,系統(tǒng)中有多少個(gè)ADC,便將該概率自乘多少次,即(1–CERSINGLE)#ADCs。最后,將1減去上述值,便可得出系統(tǒng)會(huì)出錯(cuò)的誤差率。我們得到以下方程:
CERMULTIPLE = 1 – (1 – CERSINGLE)#ADCs
考慮一個(gè)使用99個(gè)ADC,單個(gè)ADC的CER為10–15的系統(tǒng)。
1 – CERSINGLE = 0.999999999999999
CERMULTIPLE = 1 – (0.999999999999999)
99 =9.8999999999995149000000000799095 × 10–14 (~about 10–13)
可以看出,現(xiàn)在的CERMULTIPLE值幾乎比CERSINGLE (10–15)大100倍。由此可以得知,含有99個(gè)ADC的系統(tǒng)的轉(zhuǎn)換誤差率大致等于單個(gè)ADC的CER乘以系統(tǒng)中的ADC數(shù)量。從根本上說,它高于單個(gè)ADC的轉(zhuǎn)換誤差率,既受單個(gè)ADC轉(zhuǎn)換誤差率的限制,也受系統(tǒng)所用轉(zhuǎn)換器數(shù)量的限制。因此,我們可以得出結(jié)論:包含許多ADC的系統(tǒng)與單個(gè)ADC相比,總轉(zhuǎn)換誤差率會(huì)顯著提高。
圖7. 使用多個(gè)轉(zhuǎn)換器的系統(tǒng)的CER正比于單個(gè)轉(zhuǎn)換器的CER乘以ADC數(shù)量。
確定ADC轉(zhuǎn)換誤差可能很困難,但仍是可實(shí)現(xiàn)的。第一步是確定系統(tǒng)中的轉(zhuǎn)換誤差大致有多大。然后需要確定一組適當(dāng)?shù)挠薪缯`差限值,包括預(yù)期ADC操作的非線性良性源。最后,特定測量算法可實(shí)現(xiàn)大部分或全部測試。測量結(jié)果可外推到測試界限之外,以獲得額外的近似。
參考文獻(xiàn)
Beavers,Ian。“高速ADC的轉(zhuǎn)換誤差率解密。”EDN,2014年。
Brannon,Brad。“ADC噪聲對(duì)無線系統(tǒng)性能影響的分析。”EE Times,2003年。
Frank Farrelly和Chris Loberg。“更快的JESD204B標(biāo)準(zhǔn)帶來驗(yàn)證挑戰(zhàn)。”Electronic Design,2013年。
Kester,Walt。“MT-011:找出那些難以琢磨、稍縱即逝的閃碼和亞穩(wěn)狀態(tài)。”指南MT-011,ADI公司,2006年。
Kester,Walt。“MT-004:ADC輸入噪聲面面觀—噪聲是利還是弊?。”指南MT-004,ADI公司,2005年10月。
Redd,Justin。“計(jì)算誤差概率估計(jì)的統(tǒng)計(jì)置信度。”Lightwave,2000年。
Redd,Justin。“誤碼率測試解密。”Lightwave Online,2004年。Jeffrey Ugalde和Ian Beavers。“設(shè)計(jì)低誤碼率的JESD204B轉(zhuǎn)換器系統(tǒng)。”EDN,2014年。
Wolaver,Dan H。“快速精確地測量誤差率。”Electronic Design,1995年。
尾注
1 雖然本文未做詳細(xì)討論,但ADC接收器的數(shù)字?jǐn)?shù)據(jù)眼的質(zhì)量以及相應(yīng)的數(shù)字鏈路BER可歸因于許多因素,包括預(yù)加重、PCB材料、碼間干擾和走線長度。
2 欲更詳細(xì)了解CER測試的置信度,請(qǐng)參閱(Redd,2000)和(Beavers,2014)
本文轉(zhuǎn)載自ADI電機(jī)控制中文技術(shù)社區(qū)。
推薦閱讀:
特別推薦
- AMTS 2025展位預(yù)訂正式開啟——體驗(yàn)科技驅(qū)動(dòng)的未來汽車世界,共迎AMTS 20周年!
- 貿(mào)澤電子攜手安森美和Würth Elektronik推出新一代太陽能和儲(chǔ)能解決方案
- 功率器件熱設(shè)計(jì)基礎(chǔ)(六)——瞬態(tài)熱測量
- 貿(mào)澤開售Nordic Semiconductor nRF9151-DK開發(fā)套件
- TDK推出用于可穿戴設(shè)備的薄膜功率電感器
- 日清紡微電子GNSS兩款新的射頻低噪聲放大器 (LNA) 進(jìn)入量產(chǎn)
- 中微半導(dǎo)推出高性價(jià)比觸控 MCU-CMS79FT72xB系列
技術(shù)文章更多>>
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 智能電池傳感器的兩大關(guān)鍵部件: 車規(guī)級(jí)分流器以及匹配的評(píng)估板
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- AHTE 2025展位預(yù)訂正式開啟——促進(jìn)新技術(shù)新理念應(yīng)用,共探多行業(yè)柔性解決方案
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
單向可控硅
刀開關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點(diǎn)膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動(dòng)車
電動(dòng)工具
電動(dòng)汽車
電感
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險(xiǎn)絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖