本文將說(shuō)明650伏特(V)IGBT3、650V IGBT4及650V高速I(mǎi)GBTHS3 IGBT三者應(yīng)用在功率模組上的差異。結(jié)果顯示,依據(jù)裝置設(shè)計(jì),650V HS3 IGBT將能提供最理想的效能,用做高效率的切換開(kāi)關(guān)。
對(duì)阻斷電壓介于600~1,200V的現(xiàn)代IGBT而言,溝槽場(chǎng)截止(Trench-Field-Stop)技術(shù)是最常見(jiàn)的概念。這項(xiàng)技術(shù)一方面可讓裝置執(zhí)行低導(dǎo)通電壓及軟切換,另一方面可降低切換損耗并提供高頻率應(yīng)用,類(lèi)似金屬氧化物半導(dǎo)體場(chǎng)效電晶體(MOSFET)的切換效能。
溝槽場(chǎng)截止降低IGBT靜態(tài)損耗
搭載這項(xiàng)技術(shù)的元件效能主要由晶格尺寸、晶片厚度及摻雜分布等設(shè)計(jì)參數(shù)控制。設(shè)計(jì)人員透過(guò)調(diào)整這些參數(shù),便能讓元件在漂移區(qū)的高載子密度增加。此類(lèi)元件提供低VCE(sat),降低靜態(tài)損耗;于關(guān)斷期間,高載子密度會(huì)減慢元件清除速度,增加動(dòng)態(tài)損耗。因此,IGBT除了可用于太陽(yáng)能變頻器或升壓器之類(lèi)需要低動(dòng)態(tài)損耗元件的高頻率應(yīng)用,也適用在需要低靜態(tài)損耗的低頻率應(yīng)用。
具低關(guān)閉損耗 HS3 IGBT適合高頻應(yīng)用
測(cè)量時(shí)使用50安培(A)額定集極電流的650V IGBT3、650V IGBT4及650V HS3 IGBT,透過(guò)測(cè)量切換損耗來(lái)決定晶片的電子效能。測(cè)量時(shí),將每個(gè)晶片整合在具有相同電路及17奈亨(nH)雜散電感的EasyPACK 2B功率模組。由于導(dǎo)通損耗EON主要受使用的飛輪二極體影響,所有晶片在運(yùn)作時(shí)皆使用額定電流IF=30A的650V射極控制二極體。
除非另行指定,所有測(cè)量均在實(shí)驗(yàn)室中依下列條件進(jìn)行:采用整合式電流探針且雜散電感為L(zhǎng)=25nH;直流連結(jié)電壓設(shè)為VDC=400V,符合一般應(yīng)用電壓,晶片以IC=50A的額定集極電流運(yùn)作;IGBT驅(qū)動(dòng)使用閘射極電壓VGE=±15V。所有測(cè)量均在Tvj=25℃下執(zhí)行。晶片的切換運(yùn)作皆在上述設(shè)定下測(cè)量,從開(kāi)通及關(guān)斷波形中擷取出對(duì)應(yīng)的能源和特性切換參數(shù)。
圖1顯示HS3 IGBT、IGBT3及IGBT4在相同切換參數(shù)下的切換損耗。于開(kāi)通及關(guān)斷時(shí)分別達(dá)到di/dt=1.5千安培(kA)/微秒(s)和dv/dt=4.5千伏特(kV)/s的條件設(shè)定RG。HS3 IGBT具有最低的切換損耗EON及EOFF,且加總的Etotal不及IGBT3的一半。圖1中插圖顯示HS3 IGBT的EON和di/dt與RG的關(guān)系,RG升高時(shí),EON升高,而di/dt降低;尤其在RG1kA/s,而較高的RG將使di/dt低于0.5kA/s。
針對(duì)HS3 IGBT、IGBT3和IGBT4,開(kāi)通時(shí)在相同的di/dt下,關(guān)斷時(shí)在相同的dv/dt下,EON、EOFF和Etotal的切換能量比較。上方插圖為HS3 IGBT的EON和di/dt與RG的關(guān)聯(lián)。HS3具有低關(guān)閉損耗,表示其切換效能優(yōu)異。因此,HS3 IGBT最適合高頻率應(yīng)用,其藉由權(quán)衡EOFF和VCE(sat),可提供低動(dòng)態(tài)損耗。由于HS3 IGBT使用高閘極電阻,使其具有高導(dǎo)通損耗,同時(shí)帶來(lái)極低的di/dt。為補(bǔ)償此特性,必須大幅降低導(dǎo)通閘極電阻,其中一種可行的實(shí)作方式是使用較為精密的閘極驅(qū)動(dòng)設(shè)計(jì),讓HS3 IGBT可用做非常高效率的切換開(kāi)關(guān)。
[page]
RG設(shè)定影響HS3 IGBT切換效能
前文顯示HS3 IGBT在高頻率應(yīng)用上大幅超越IGBT3及IGBT4,接下來(lái)要測(cè)量的是HS3 IGBT在操作條件下的效能。在一般的太陽(yáng)能變頻器操作條件下,HS3 IGBT大部分將以低于額定晶片電流的集極電流運(yùn)作;此外,直流連結(jié)電壓可能會(huì)隨廣泛的電壓范圍變化。因此,以下將分析HS3 IGBT在150~450V的直流連結(jié)電壓范圍,以及集極電流達(dá)到額定晶片電流下的切換損耗。
測(cè)量時(shí),閘極驅(qū)動(dòng)電路使用RG=15。圖2顯示HS3 IGBT切換損耗與直流連結(jié)電壓的關(guān)聯(lián),當(dāng)VDC較低時(shí)EOFF也較低,且會(huì)隨著VDC提高呈線(xiàn)性增加,而較高的集極電流則會(huì)提高關(guān)斷損耗;相較之下,可發(fā)現(xiàn)EON的提高與VDC和IC不成比例,在IC=10A時(shí),EON相對(duì)于VDC的斜率幾乎為恒定;在IC=30和50A時(shí),可發(fā)現(xiàn)VDC300V時(shí)的斜率變大。在插圖中,非等比例的提高也同樣發(fā)生在Etotal。
這些測(cè)量顯示,相較于導(dǎo)通損耗,HS3 IGBT的關(guān)斷損耗對(duì)裝置效能的影響極為輕微,當(dāng)VDC300V,IC30A時(shí),導(dǎo)通損耗非等比例的提高,可在低集極電流下得到最高效率;較大的VDC和IC會(huì)提高導(dǎo)通損耗,與di/dt降低有所關(guān)聯(lián)。此效應(yīng)為HS3 IGBT的特性,且和裝置設(shè)計(jì)有關(guān)。要補(bǔ)償此效應(yīng)的方法之一,就是降低RG,進(jìn)而降低軟化度(Softness)。
使用高切換速度的裝置時(shí),伴隨應(yīng)用而來(lái)的需求之一,就是必須降低設(shè)定中的雜散電感。因此,模組及設(shè)定兩者都必須提供低電感,以避免寄生效應(yīng)。與雜散電感緊密相關(guān)的兩個(gè)常見(jiàn)效應(yīng)包括集射極的過(guò)電壓峰值VPeak,以及關(guān)斷和開(kāi)通期間集射極電壓下降導(dǎo)致的切換損耗降低。
圖3顯示在相同的切換參數(shù),VDC=400V,di/dt=1.5kA/s和dv/dt=7.2kV/s,及VDC=300V,di/dt=1.6kA/sdv/dt=6.0kV/s下,HS3 IGBT的切換損耗和過(guò)電壓峰值相對(duì)于設(shè)定的雜散電感。提高L時(shí),關(guān)斷能量會(huì)稍微提高,而開(kāi)通能量則會(huì)大幅降低,因此,提高L將會(huì)降低總切換能量,這個(gè)一般性趨勢(shì)與直流連結(jié)電壓無(wú)關(guān);另一方面,較高的L將使VPeak提高,因此使用的直流連結(jié)電壓將受到限制。對(duì)策之一就是提高RG以降低切換速度,但這樣卻會(huì)提高切換損耗。
[page]
HS3 IGBT具備低損耗/高輸出電流
為分析不同切換頻率的裝置效能,使用IPOSIM模擬變頻器效能。為了能夠進(jìn)行比較,圖1所示的HS3 IGBT和IGBT3的動(dòng)態(tài)損耗也考量在內(nèi)。在模擬中,計(jì)算出輸出功率4千伏安(kVA)的單相H型電橋的輸出電流,并考量以下的操作條件:輸出電流IOUT設(shè)為17.4ARMS,功率因子使用1.0;此外,調(diào)變指數(shù)為0.8,直流連結(jié)電壓為400V。這兩款裝置使用相同的熱狀況,將散熱片溫度固定在80℃。
圖4顯示H橋變頻器在上述操作條件下模擬的半導(dǎo)體功率損耗PLosses。從H橋變頻器的分析顯示,IGBT3的靜態(tài)損耗只有HS3 IGBT靜態(tài)損耗的70%;提高切換頻率f時(shí),動(dòng)態(tài)損耗變得很明顯,在f=7.5kHz時(shí),HS3 IGBT的整體損耗等于IGBT3的整體損耗,如圖4星號(hào)部分顯示;當(dāng)進(jìn)一步提高切換頻率時(shí),此效應(yīng)更為顯著,而且可清楚發(fā)現(xiàn)HS3 IGBT的優(yōu)點(diǎn)在高切換頻率下更為明顯。
左側(cè):HS3 IGBT和IGBT3在H橋變頻器拓?fù)涞哪M半導(dǎo)體功率損耗與切換頻率的關(guān)系。模擬的功率損耗為H橋變頻器的功率損耗,而非單一晶片;右側(cè):HS3 IGBT和IGBT3最高可達(dá)到的輸出電流與切換頻率的關(guān)系。
圖4右側(cè)顯示最高可達(dá)到的輸出電流,計(jì)算時(shí)使用了上述的操作條件,其中IOUT不是固定值,會(huì)受裝置最高接面溫度限制;當(dāng)提高頻率時(shí),IOUT隨之下降,在低切換頻率時(shí),IGBT3的最高輸出電流高于HS3 IGBT;在f=7.5kHz時(shí),HS3 IGBT的輸出電流高于IGBT3的輸出電流。HS3 IGBT和IGBT3兩者IOUT的差異,在較高的切換頻率下更為顯著。
閘極驅(qū)動(dòng)設(shè)計(jì)發(fā)揮HS3 IGBT效能
本文提出HS3 IGBT、IGBT3和IGBT4的比較,當(dāng)中顯示HS3 IGBT的切換損耗少了兩倍,在高頻率應(yīng)用的效能上大幅超越IGBT3及IGBT4。為了能善加發(fā)揮HS3 IGBT的切換效能,需要有針對(duì)應(yīng)用最佳化的操作模式。因此,必須仔細(xì)考量操作電流和閘極電阻,針對(duì)后者,其中一種可能的方式就是使用更為精細(xì)的閘極驅(qū)動(dòng)設(shè)計(jì)。
經(jīng)過(guò)上面的講解,我們可以看出HS3 IGBT是一款經(jīng)濟(jì)實(shí)惠的高效率切換開(kāi)關(guān),非常適合用在太陽(yáng)能變頻器或不斷電系統(tǒng)(UPS)之類(lèi)的高頻率硬切換應(yīng)用。模擬的結(jié)果也支持這些發(fā)現(xiàn),同時(shí)顯示HS3 IGBT適合在操作切換頻率超過(guò)7.5kHz的應(yīng)用中,當(dāng)做最新型的切換開(kāi)關(guān)使用。
相關(guān)閱讀:
工程師詳解:如何通過(guò)IGBT熱計(jì)算來(lái)優(yōu)化電源設(shè)計(jì)
解析IGBT脈沖激光電源的工作原理與設(shè)計(jì)要點(diǎn)
舉例說(shuō)明:消除全橋逆變IGBT電壓尖峰的方法