工業(yè)物聯(lián)網(wǎng)檢測(cè)和測(cè)量:邊緣節(jié)點(diǎn)
發(fā)布時(shí)間:2017-11-16 來源:Ian Beavers 責(zé)任編輯:wenwei
【導(dǎo)讀】工業(yè)物聯(lián)網(wǎng)(IoT)正在醞釀廣泛的轉(zhuǎn)變,這種轉(zhuǎn)變不僅將使互聯(lián)機(jī)器間的相互檢測(cè)成為一種競(jìng)爭(zhēng)優(yōu)勢(shì),還將使其成為必不可少的基本服務(wù)。工業(yè)物聯(lián)網(wǎng)以邊緣節(jié)點(diǎn)為起始點(diǎn),后者是檢測(cè)和測(cè)量的目標(biāo)切入點(diǎn)。這是物理世界與計(jì)算數(shù)據(jù)分析進(jìn)行交互的接口所在。互聯(lián)的工業(yè)機(jī)器可檢測(cè)大量的信息,進(jìn)而用于制定關(guān)鍵決策。這種邊緣傳感器可能遠(yuǎn)離存儲(chǔ)歷史分析的云服務(wù)器。它必須通過將邊緣數(shù)據(jù)聚合到互聯(lián)網(wǎng)的網(wǎng)關(guān)進(jìn)行連接。理想情況下,邊緣傳感器節(jié)點(diǎn)具有很小的規(guī)格尺寸,可在空間受限的環(huán)境中輕松進(jìn)行部署。
檢測(cè)、測(cè)量、解讀、連接
在這個(gè)包含多個(gè)部分的工業(yè)物聯(lián)網(wǎng)系列文章的第一部分,我們將分解和研究大型物聯(lián)網(wǎng)框架中邊緣節(jié)點(diǎn)檢測(cè)和測(cè)量能力的基本方面:檢測(cè)、測(cè)量、解讀和連接數(shù)據(jù),同時(shí)還將考慮功率管理和安全性。每個(gè)部分都將探討一組獨(dú)特的挑戰(zhàn)。邊緣節(jié)點(diǎn)的智能管理對(duì)成功實(shí)施來說十分關(guān)鍵。在一些情況下,超低功耗(ULP)是最重要的性能指標(biāo)。在關(guān)鍵事件期間,當(dāng)傳感器從睡眠模式喚醒時(shí),可以過濾掉絕大多數(shù)的潛在數(shù)據(jù)。
圖1. 邊緣節(jié)點(diǎn)器件智能地檢測(cè)、測(cè)量和解讀數(shù)據(jù)并將其連接至與云相連的互聯(lián)網(wǎng)網(wǎng)關(guān)。數(shù)據(jù)可以通過一些形式的分析進(jìn)行預(yù)處理,然后再傳輸以進(jìn)行更深的數(shù)據(jù)挖掘智能分析。
傳感器構(gòu)成工業(yè)物聯(lián)網(wǎng)電子生態(tài)系統(tǒng)的前端邊緣。測(cè)量階段將檢測(cè)到的信息轉(zhuǎn)換為有意義的數(shù)據(jù),如壓力、位移或旋轉(zhuǎn)的可量化值。在解讀階段,邊緣分析與處理會(huì)將測(cè)量數(shù)據(jù)轉(zhuǎn)換為可操作的事件。1 只有最有價(jià)值的信息才應(yīng)越過節(jié)點(diǎn)連接到云,以供預(yù)測(cè)或歷史處理。在整個(gè)信號(hào)鏈中,都可以根據(jù)初始的可接受性限制來抑制或過濾數(shù)據(jù)。理想情況下,傳感器節(jié)點(diǎn)應(yīng)僅發(fā)送絕對(duì)必要的信息,并且應(yīng)在獲得關(guān)鍵數(shù)據(jù)后盡快制定關(guān)鍵決策。
邊緣節(jié)點(diǎn)必須通過有線或無線傳感器節(jié)點(diǎn)(WSN)連接到外部網(wǎng)絡(luò)。在信號(hào)鏈的這一部分中,數(shù)據(jù)完整性仍然十分關(guān)鍵。如果通信不一致、丟失或損壞,則優(yōu)化檢測(cè)和測(cè)量數(shù)據(jù)幾乎沒有價(jià)值。通信期間數(shù)據(jù)丟失是不可接受的。存在電氣噪聲的工業(yè)環(huán)境可能十分惡劣和艱苦,尤其是在存在大量金屬物體情況下進(jìn)行射頻通信時(shí)。因此,必須在系統(tǒng)架構(gòu)設(shè)計(jì)期間預(yù)先設(shè)計(jì)魯棒的通信協(xié)議。
ULP系統(tǒng)的功率管理以選擇調(diào)節(jié)器元件來實(shí)現(xiàn)最大效率為起點(diǎn)。但是,由于邊緣節(jié)點(diǎn)也可能以快速占空比喚醒和睡眠,因此還應(yīng)考慮上電和掉電時(shí)間。外部觸發(fā)器或喚醒命令能夠幫助快速提醒邊緣節(jié)點(diǎn),使其開始檢測(cè)和測(cè)量數(shù)據(jù)。
數(shù)據(jù)安全性也是工業(yè)物聯(lián)網(wǎng)系統(tǒng)必須考慮的一個(gè)問題。我們不僅需要確保邊緣內(nèi)的數(shù)據(jù)安全無慮,還必須確保其對(duì)網(wǎng)絡(luò)網(wǎng)關(guān)的訪問免受惡意攻擊。決不允許仿冒邊緣節(jié)點(diǎn)來獲取網(wǎng)絡(luò)訪問以進(jìn)行不法活動(dòng)。
智能始于邊緣
邊緣處具有眾多檢測(cè)解決方案,這些解決方案可能不只是單個(gè)分立器件。邊緣可能存在多種不同的無關(guān)數(shù)據(jù)采集。溫度、聲音、振動(dòng)、壓力、濕度、運(yùn)動(dòng)、污染物、音頻和視頻只是其中可檢測(cè)的部分變量,這些數(shù)據(jù)會(huì)經(jīng)過處理并通過網(wǎng)關(guān)發(fā)送至云,以進(jìn)行進(jìn)一步的歷史和預(yù)測(cè)分析。
毫不夸張地說,傳感器就是工業(yè)物聯(lián)網(wǎng)的支柱。2 但更準(zhǔn)確的說法應(yīng)該是,它們是獲得洞察的中樞神經(jīng)系統(tǒng)。邊緣節(jié)點(diǎn)檢測(cè)和測(cè)量技術(shù)是目標(biāo)數(shù)據(jù)的"出生地"。如果在解決方案鏈的這一階段如實(shí)地記錄了不良或錯(cuò)誤的數(shù)據(jù),則云中再多的后期處理也無法挽回?fù)p失的價(jià)值。
任務(wù)關(guān)鍵型系統(tǒng)(如具有高風(fēng)險(xiǎn)結(jié)果的醫(yī)療保健和工廠停機(jī)監(jiān)控系統(tǒng))要求質(zhì)量數(shù)據(jù)測(cè)量具有魯棒的完整性。數(shù)據(jù)質(zhì)量至關(guān)重要。誤報(bào)或遺漏可能代價(jià)高昂,非常耗時(shí),甚至可能威脅生命。代價(jià)巨大的錯(cuò)誤最終會(huì)導(dǎo)致計(jì)劃外的維護(hù)、勞動(dòng)力使用效率低下,甚至不得不禁用整個(gè)物聯(lián)網(wǎng)系統(tǒng)。智能始于邊緣節(jié)點(diǎn),而此處也適用那句老話:如果輸入的是垃圾,那么輸出的也一定是垃圾。
圖2. 很多有線和無線邊緣節(jié)點(diǎn)輸出可自主連接到網(wǎng)關(guān)節(jié)點(diǎn),以便在傳輸至云服務(wù)器之前進(jìn)行聚合。
能夠訪問數(shù)據(jù)寶藏也就意味著需要承擔(dān)重大的責(zé)任
在沒有邊緣節(jié)點(diǎn)智能的傳統(tǒng)信號(hào)鏈解決方案中,數(shù)據(jù)只是數(shù)據(jù)。非智能節(jié)點(diǎn)從不會(huì)幫助生成用于制定可行決策的智慧和知識(shí)。1 可能存在大量對(duì)系統(tǒng)目標(biāo)性能沒有影響的原始低質(zhì)量數(shù)據(jù)。3 轉(zhuǎn)換所有這些數(shù)據(jù)并將其發(fā)送至最終云存儲(chǔ)目的地可能需要消耗大量的功率和帶寬。
相比之下,聰明的智能分區(qū)邊緣節(jié)點(diǎn)檢測(cè)和測(cè)量會(huì)將數(shù)據(jù)轉(zhuǎn)換為可付諸行動(dòng)的信息。智能節(jié)點(diǎn)可降低整體功耗,縮短延遲并減少帶寬浪費(fèi)。4 這使得具有較長(zhǎng)延遲的反應(yīng)型物聯(lián)網(wǎng)可以轉(zhuǎn)變成實(shí)時(shí)的預(yù)測(cè)型物聯(lián)網(wǎng)模式。物聯(lián)網(wǎng)仍然適用基本的模擬信號(hào)鏈電路設(shè)計(jì)理念。對(duì)于復(fù)雜的系統(tǒng),通常需要擁有深厚的應(yīng)用專業(yè)知識(shí)來解讀已處理的數(shù)據(jù)。
優(yōu)化的智能分區(qū)最大程度地提升了云價(jià)值
只有最重要的測(cè)量信息才需要通過網(wǎng)關(guān)發(fā)送至云端以進(jìn)行最終處理。在一些情況下,大多數(shù)數(shù)據(jù)根本不重要。5 但是,對(duì)于本地實(shí)時(shí)決策所需的時(shí)間關(guān)鍵型系統(tǒng)數(shù)據(jù),應(yīng)在將其聚合到可進(jìn)行遠(yuǎn)程訪問的遠(yuǎn)端節(jié)點(diǎn)之前及早依其行事。相反,通過預(yù)測(cè)模型利用歷史值來影響長(zhǎng)期洞察的信息是云處理的理想應(yīng)用。通過將數(shù)據(jù)歸檔到龐大的數(shù)據(jù)庫(kù)以供追溯處理和決策使用,發(fā)揮出了云處理和存儲(chǔ)的強(qiáng)大優(yōu)勢(shì)。6
圖3. 邊緣節(jié)點(diǎn)的智能分區(qū)解決了以前無法解決的新挑戰(zhàn)。信號(hào)鏈中更早的精簡(jiǎn)處理和智能實(shí)現(xiàn)了更高效的整體物聯(lián)網(wǎng)解決方案。
實(shí)時(shí)決策依賴于邊緣
物聯(lián)網(wǎng)傳感器主要為模擬傳感器。具體的工業(yè)應(yīng)用要求將決定邊緣節(jié)點(diǎn)前端所需傳感器的動(dòng)態(tài)范圍和帶寬。在將信號(hào)轉(zhuǎn)換為數(shù)字表示并傳輸?shù)竭吘壨獠壳?,信?hào)鏈的前端將處于模擬域內(nèi)。如果選擇不當(dāng),模擬信號(hào)鏈中的各個(gè)元件都有可能限制邊緣節(jié)點(diǎn)的整體性能。動(dòng)態(tài)范圍將為目標(biāo)滿量程傳感器相對(duì)于本底噪聲或下個(gè)最高無用信號(hào)的差值。
由于物聯(lián)網(wǎng)傳感器通常會(huì)同時(shí)尋找已知和未知活動(dòng),因此模擬濾波器并非始終有意義。數(shù)字濾波會(huì)在對(duì)信號(hào)進(jìn)行采樣后執(zhí)行。除非在傳感器的前端使用模擬濾波器,否則基波的諧波或其他雜散信號(hào)可能混入檢測(cè)的信息并與目標(biāo)信號(hào)競(jìng)爭(zhēng)功率。因此,在設(shè)計(jì)階段應(yīng)該針對(duì)時(shí)域和頻域中的意外檢測(cè)信號(hào)制定應(yīng)對(duì)計(jì)劃,防止干擾偽像出現(xiàn)在測(cè)量數(shù)據(jù)中。
檢測(cè)到的信息通常由信號(hào)鏈中接下來的ADC進(jìn)行測(cè)量。如果使用分立元件來設(shè)計(jì)物聯(lián)網(wǎng)邊緣節(jié)點(diǎn),則在選擇測(cè)量ADC時(shí)應(yīng)該注意不要減小傳感器的動(dòng)態(tài)范圍。嵌入式ADC的輸入滿量程范圍通常與傳感器輸出幅度匹配良好。理想情況下,傳感器輸出應(yīng)消耗幾乎整個(gè)ADC輸入范圍(在1 dB內(nèi)),而不使ADC發(fā)生飽和,也不會(huì)在范圍限制處被裁減掉。但是,也可以使用放大器級(jí)來對(duì)傳感器輸出信號(hào)進(jìn)行增益或衰減,以便使ADC自身的動(dòng)態(tài)范圍達(dá)到最大。ADC滿量程輸入、采樣率、位分辨率、輸入帶寬和噪聲密度都會(huì)影響邊緣節(jié)點(diǎn)的信號(hào)測(cè)量性能。
前端放大器可以嵌入在節(jié)點(diǎn)的測(cè)量級(jí)或作為分立元件置于ADC前。放大器的增益、帶寬和噪聲也可以增強(qiáng)邊緣節(jié)點(diǎn)的性能。
信號(hào)鏈中傳感器之后的測(cè)量ADC通常采用以下兩種采樣架構(gòu)類型之一:奈奎斯特速率或連續(xù)時(shí)間- (CTSD),其中后者在嵌入式ADC中更為常見。奈奎斯特速率ADC具有等于采樣率頻率一半(即fs/2)的平坦標(biāo)稱噪底。CTSD結(jié)合使用過采樣率和陷波通帶,使噪聲超出目標(biāo)帶寬,從而增加動(dòng)態(tài)范圍。在了解邊緣節(jié)點(diǎn)的模擬帶寬和動(dòng)態(tài)范圍時(shí),測(cè)量ADC架構(gòu)及其分辨率非常關(guān)鍵。
圖4. 如果物聯(lián)網(wǎng)傳感器上沒有前端模擬濾波器,奈奎斯特速率ADC會(huì)將超出第一奈奎斯特區(qū)域的高階頻率折疊回目標(biāo)帶寬中。相比之下,具有過采樣調(diào)制時(shí)鐘的CTSD ADC架構(gòu)使用噪聲整形來在目標(biāo)頻段中實(shí)現(xiàn)高動(dòng)態(tài)范圍。由于CTSD具有固有濾波能力,因此對(duì)信號(hào)混疊不太敏感。
例如,在頻域中,1 Hz單位帶寬的噪聲密度將基于ADC的SNR以及噪聲在ADC采樣頻譜上的分布寬度。在奈奎斯特速率ADC中,噪聲頻譜密度(每1 Hz帶寬)為0 dB – ADC信噪比(SNR) – 10 × log(fs/2),其中fs/2為采樣率除以二或ADC的單個(gè)奈奎斯特區(qū)域。理想SNR的計(jì)算公式為SNR = 6.02 × N + 1.76 dB,其中N為ADC位數(shù)。但是,ADC的實(shí)際SNR涉及到晶體管和半導(dǎo)體處理的非理想因素,這包括電氣噪聲和晶體管級(jí)元件瑕疵。這些非理想因素會(huì)導(dǎo)致SNR性能降到理想性能以下,因此請(qǐng)查閱ADC數(shù)據(jù)手冊(cè)以了解SNR目標(biāo)性能。
邊緣節(jié)點(diǎn)的動(dòng)態(tài)范圍將由傳感器的動(dòng)態(tài)范圍、信號(hào)的放大率(如果需要)和ADC滿量程動(dòng)態(tài)范圍組成。如果傳感器的滿量程輸出信號(hào)未達(dá)到ADC滿量程范圍輸入的1 dB以內(nèi),則ADC的部分動(dòng)態(tài)范圍將會(huì)閑置。相反,如果來自傳感器的輸入超出ADC的量程,則會(huì)造成采樣的信號(hào)失真。在計(jì)算邊緣節(jié)點(diǎn)的動(dòng)態(tài)范圍時(shí),放大器帶寬、增益和噪聲也是需要考慮的一部分。傳感器、放大器和ADC的總電氣噪聲將為各RMS分量的平方和的平方根。7
圖5. 傳感器信號(hào)輸出幅度與ADC的輸入滿量程不匹配而出現(xiàn)動(dòng)態(tài)范圍丟失(藍(lán)色)的示例。需要使用放大器最大程度地增大傳感器的動(dòng)態(tài)范圍,同時(shí)防止ADC發(fā)生飽和(紅色)。信號(hào)匹配必須考慮整個(gè)邊緣節(jié)點(diǎn)信號(hào)鏈的帶寬、動(dòng)態(tài)范圍和噪聲。
智能工廠
在工業(yè)物聯(lián)網(wǎng)中,機(jī)器振動(dòng)狀態(tài)監(jiān)控將會(huì)是一項(xiàng)非常重要的應(yīng)用。新型或傳統(tǒng)機(jī)器設(shè)備可能擁有多個(gè)關(guān)鍵的機(jī)械元件,例如轉(zhuǎn)軸或齒輪,這些元件可能裝有高動(dòng)態(tài)范圍的MEMS加速度計(jì)。8 這些多軸傳感器將對(duì)機(jī)械的振動(dòng)位移進(jìn)行實(shí)時(shí)采樣。測(cè)量后,振動(dòng)信號(hào)可以進(jìn)行處理并與理想的機(jī)器配置進(jìn)行比較。9 在工廠中,通過分析這類信息,可以幫助提高效率、減少停機(jī)情況并提前預(yù)測(cè)機(jī)械故障。在極端情況下,可迅速關(guān)閉機(jī)械元件正在急劇惡化的機(jī)器,從而避免造成進(jìn)一步的損壞。
圖6. 雖然可以定期執(zhí)行例行機(jī)器維護(hù),但這通常不是根據(jù)機(jī)器狀況而智能進(jìn)行的。10 通過分析特定機(jī)器操作的振動(dòng)性能,可在邊緣節(jié)點(diǎn)處發(fā)出預(yù)測(cè)故障點(diǎn)和維護(hù)里程碑警告。
通過實(shí)現(xiàn)邊緣節(jié)點(diǎn)分析,可以顯著縮短決策時(shí)間延遲。圖7顯示了這樣的一個(gè)示例,在這個(gè)示例中,在超出MEMS傳感器警告閾值限制后,系統(tǒng)立即發(fā)送了警告。如果事件極其嚴(yán)重而被認(rèn)定為關(guān)鍵事件,可授權(quán)節(jié)點(diǎn)自動(dòng)禁用違規(guī)設(shè)備,以防止發(fā)生非常耗時(shí)的災(zāi)難性機(jī)械故障。
圖7. 機(jī)器振動(dòng)采樣數(shù)據(jù)的時(shí)域表示,其中比較器閾值可決定是否將檢測(cè)和測(cè)量數(shù)據(jù)傳送到邊緣以外。系統(tǒng)可保持低功耗狀態(tài)以過濾大部分信息,直到通過閾值交叉事件實(shí)現(xiàn)數(shù)據(jù)優(yōu)勢(shì)為止。
或者,可以調(diào)用觸發(fā)信號(hào)以使能另一個(gè)檢測(cè)和測(cè)量節(jié)點(diǎn)(如備用機(jī)器元件上的節(jié)點(diǎn)),以便開始根據(jù)第一個(gè)事件來解讀數(shù)據(jù)。這樣可以減少來自邊緣節(jié)點(diǎn)的采樣數(shù)據(jù)總量。要確定相對(duì)于標(biāo)稱值的任何振動(dòng)異常,前端節(jié)點(diǎn)在設(shè)計(jì)上必須達(dá)到所需的檢測(cè)性能。檢測(cè)和測(cè)量電路的動(dòng)態(tài)范圍、采樣率和輸入帶寬應(yīng)該足以識(shí)別任何偏移事件。
智慧城市
另一種工業(yè)物聯(lián)網(wǎng)邊緣節(jié)點(diǎn)應(yīng)用為具有嵌入式視頻分析的智慧城市工業(yè)攝像機(jī)。根據(jù)智慧城市的定義,城市的使命是將無數(shù)的信息和通信點(diǎn)匯聚到一個(gè)凝聚的系統(tǒng)中,以實(shí)現(xiàn)對(duì)城市資產(chǎn)的管理。一種常見的應(yīng)用是提供停車位空缺提醒和占用檢測(cè)。調(diào)試期間會(huì)為各攝像機(jī)預(yù)先確定視場(chǎng)。分析機(jī)制中可以定義和使用邊界邊緣檢測(cè)來識(shí)別各種對(duì)象及其運(yùn)動(dòng)。在邊緣處,不僅可以分析對(duì)象的歷史運(yùn)動(dòng),還可使用數(shù)字信號(hào)處理(DSP)算法來根據(jù)對(duì)象軌跡計(jì)算預(yù)測(cè)的路徑。
圖8. 利用邊緣節(jié)點(diǎn)視頻分析,可在低功耗系統(tǒng)中確定對(duì)象類型檢測(cè)、軌跡和邊界交叉,而無需將全帶寬視頻數(shù)據(jù)發(fā)送至云端進(jìn)行分析。只需傳輸時(shí)間戳及痕跡對(duì)象坐標(biāo)和類型。
在類似的頻率濾波中,終端處理通常不需要全帶寬的視頻分析幀。通常,不用于安全目的時(shí),只需要完整視頻幀的一小部分。在固定安裝的攝像機(jī)上,幀與幀之間的大部分可視數(shù)據(jù)為靜態(tài)數(shù)據(jù)。靜態(tài)數(shù)據(jù)可以過濾掉。在一些情況下,只需要分析目標(biāo)對(duì)象的邊界交叉數(shù)或運(yùn)動(dòng)坐標(biāo)??s減的信息子集可以采用痕跡坐標(biāo)的形式傳輸至信號(hào)鏈中的下一網(wǎng)關(guān)。
邊緣節(jié)點(diǎn)視頻分析可提供多種濾波解讀來區(qū)分各種對(duì)象類型,例如汽車、卡車、自行車、人類和動(dòng)物等。這種抽取操作減少了云服務(wù)器上所需的數(shù)據(jù)帶寬和計(jì)算能力,而如果要分析下游發(fā)送的全幀速率視頻數(shù)據(jù),則會(huì)占用大量的數(shù)據(jù)帶寬和計(jì)算能力。
室內(nèi)攝像機(jī)應(yīng)用可以識(shí)別穿過入口邊界的人數(shù),還可調(diào)整房間的照明、加熱或制冷。要在極端照明條件或其他具有挑戰(zhàn)性的照明條件(如降雨)下實(shí)現(xiàn)視覺有效性,室外攝像機(jī)可能需要具有高動(dòng)態(tài)范圍。每像素8位或10位的典型成像傳感器可能無法在所有檢測(cè)情形中的照明條件下,提供足夠的亮度動(dòng)態(tài)范圍。相較于以240 Hz的刷新速率查看快速運(yùn)動(dòng),工業(yè)分析攝像機(jī)上可以使用較慢的幀速率來監(jiān)控活動(dòng)。
圖9. 通過在邊緣節(jié)點(diǎn)處部署采用DSP對(duì)象檢測(cè)算法的高動(dòng)態(tài)范圍成像器,即使在低照明條件下,也可以確定運(yùn)動(dòng)和邊界入侵。這個(gè)示例使用視覺對(duì)比來定義室內(nèi)工廠/辦公室(左側(cè))和室外停車場(chǎng)(右側(cè))的邊緣檢測(cè)。
平臺(tái)級(jí)解決方案
ADT7420 是一款具有突破性性能的4 mm × 4 mm數(shù)字溫度傳感器,內(nèi)置16位ADC,分辨率可達(dá)0.0078°C,功耗僅為210A。ADXL362是一款超低功耗、3軸MEMS加速度計(jì),在運(yùn)動(dòng)觸發(fā)喚醒模式下,以100 Hz采樣速率工作時(shí)功耗僅為2 A。它不使用功率占空比,而是在所有數(shù)據(jù)速率下均采用全帶寬架構(gòu),從而防止了輸入信號(hào)混疊。ADIS16229是一款具有嵌入式射頻收發(fā)器的雙軸18 g數(shù)字MEMS振動(dòng)傳感器。它還通過512點(diǎn)數(shù)字FFT能力提供了片上頻域信號(hào)處理功能。
支持DSP的Blackn低功耗成像平臺(tái)(BLIP)11可基于成熟的數(shù)字信號(hào)處理工具實(shí)現(xiàn)工業(yè)視覺設(shè)計(jì)的快速原型制作。優(yōu)化的軟件庫(kù)為設(shè)備制造商提供了用于運(yùn)動(dòng)檢測(cè)、人數(shù)統(tǒng)計(jì)和車輛檢測(cè)的開箱即用解決方案。
參考電路
1 Colm Prendergast. "互聯(lián)世界中的智能分區(qū)和價(jià)值創(chuàng)造" 。物聯(lián)網(wǎng)專題演講:2015 IESA視覺峰會(huì)。
2 Stephen Lawson. "物聯(lián)網(wǎng)不斷將分析能力推向邊緣." PCWorld: IDG News Service, 2016年。
3 Lisa Morgan. "邊緣分析——物聯(lián)網(wǎng)數(shù)據(jù)洪流的解藥." InformationWeek: UBM Electronics, 2016年。
4 Daniel Kirsch. "邊緣分析的價(jià)值." Hurwitz & Associates Services, 2015年。
5 Jason Stamper. 物聯(lián)網(wǎng)將分析能力驅(qū)動(dòng)至網(wǎng)絡(luò)邊緣的原因. 451 Research, 2015年。
6 Steve Nelson. "端到端探索物聯(lián)網(wǎng)." Element14: Newark Electronics, 2014年。
7 Umesh Jayamohan. "了解放大器噪聲對(duì)ADC信號(hào)鏈中總噪聲的影響." 模擬對(duì)話,2013年2月。
8 Robert Randall,"基于振動(dòng)的狀態(tài)監(jiān)控"。澳大利亞新南威爾士州:新南威爾士大學(xué),2010年。
9 Ed Spence. "利用MEMS加速度計(jì)的優(yōu)勢(shì)進(jìn)行狀態(tài)監(jiān)控." Electronic Design,Penton Publishing,2016年。
10 Jamie Smith,"用于工業(yè)物聯(lián)網(wǎng)的智能邊緣設(shè)備"。ARC工業(yè)論壇,2015年
11 Blackn低功耗成像平臺(tái)(BLIP)。ADI公司,2014年。
本文轉(zhuǎn)載自亞德諾半導(dǎo)體。
推薦閱讀:
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計(jì)
- ADI電機(jī)運(yùn)動(dòng)控制解決方案 驅(qū)動(dòng)智能運(yùn)動(dòng)新時(shí)代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 準(zhǔn) Z 源逆變器的設(shè)計(jì)
- 第12講:三菱電機(jī)高壓SiC芯片技術(shù)
- 一文看懂電壓轉(zhuǎn)換的級(jí)聯(lián)和混合概念
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
單向可控硅
刀開關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點(diǎn)膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動(dòng)車
電動(dòng)工具
電動(dòng)汽車
電感
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險(xiǎn)絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖