解讀數(shù)據(jù)手冊中的熱參數(shù)和IC結(jié)溫
發(fā)布時(shí)間:2021-09-06 來源:Ralf Ohmberger 責(zé)任編輯:wenwei
【導(dǎo)讀】工程師在轉(zhuǎn)換數(shù)據(jù)手冊中的熱阻參數(shù),并做出有意義的設(shè)計(jì)決策時(shí)常常面臨很多困惑。這篇入門文章將幫助現(xiàn)在的硬件工程師了解如何解讀數(shù)據(jù)手冊中的熱參數(shù),包括是否選擇 theta 與 psi、如何計(jì)算其值;更重要的是,如何更實(shí)用地將這些值應(yīng)用于設(shè)計(jì)。本文還將介紹應(yīng)用環(huán)境溫度之間的關(guān)系,以及它們與 PCB 溫度或 IC 結(jié)溫的比較。 最后,我們將討論功耗如何隨溫度變化,以及如何利用此特性來實(shí)現(xiàn)冷卻運(yùn)行、成本優(yōu)化的解決方案。
電熱類比
在熱量和電量之間進(jìn)行一定的類比,可以幫助我們更輕松地理解熱量。表 1 和表 2對(duì)電量和熱量及其材料常數(shù)進(jìn)行了類比。
表 1:電量和熱量之間的模擬關(guān)系 (1)
注意:
1. 該表內(nèi)容來自 Technische Temperaturmessung: 第I卷, Frank Bernhard, ISBN 978-3-642-62344-8。
2. el 為電值,th 為熱值。
表 2:不同材料的材料常數(shù)和變量
電與熱的方程類比
電量和熱量都可以在網(wǎng)絡(luò)中計(jì)算出來,其規(guī)則可與基爾霍夫定律相提并論(見表 3)。
表 3:電過程與熱過程的方程類比 (3)
注意: 該表內(nèi)容來自 Technische Temperaturmessung: 第I卷, Frank Bernhard, ISBN 978-3-642-62344-8。
數(shù)據(jù)手冊中的熱阻 (θJA 和θJC)
圖1以MPS的直流開關(guān)電源 IC MPQ4572為例,幫助大家了解熱參數(shù)。在MPQ4572數(shù)據(jù)手冊中,有兩個(gè)指定的熱阻參數(shù): θJA和 θJC。本文將詳細(xì)討論這些參數(shù)。
圖 1:數(shù)據(jù)手冊中的熱阻(θJA 和θJC)規(guī)格
圖2顯示了一個(gè)具有 5V/2A 輸出的典型 MPQ4572 應(yīng)用電路。
圖 2:具有 5V/2A 輸出的 MPQ4572 典型應(yīng)用電路
什么是結(jié)到環(huán)境熱阻(θJA)?
θJA定義為從結(jié)到環(huán)境溫度的熱阻。它衡量器件通過所有傳熱路徑、銅跡線、通孔和空氣對(duì)流條件,從結(jié)到環(huán)境溫度的散熱能力。
因此,給定的 θJA 僅對(duì)其定義的 PCB 有效。人們通常認(rèn)為θJA是適用于所有 PCB 的常數(shù),這是錯(cuò)誤的。θJA允許在通用PCB(如 JEDSD51-7)上比較不同的封裝。例如,如果MPQ4572 位于一個(gè)4 層 JESD51-7 PCB (4) 上,則其θJA可通過公式 (1) 計(jì)算:
$$theta_{JA} = 60 frac{K}{W}$$ 注意:
4.2. JESD51-7為4層PCB,是一款用于引線表面貼裝元件的高效導(dǎo)熱系數(shù)測試板。其尺寸為114.3mmx76.2mm。測量方法請參見 https://www.jedec.org/。
如果 MPQ4572 位于 一個(gè)4 層、2盎司的銅質(zhì) MPS 測試 PCB(8.9cmx8.9cm)上,其θJA可通過公式(2)來計(jì)算: $$theta_{JA} = 45 frac{K}{W}$$ 圖3所示為MPQ4572 的評(píng)估板EVQ4572-QB-00A。
圖 3:EVQ4572-QB-00A 評(píng)估板
當(dāng) RT = 25°C 時(shí),EVQ4572-QB-00A 的功耗為 1.1W。對(duì)JESD51-7 板來說,其結(jié)溫 (TJ) 可以通過公式 (3)來 估算 : $$T_J = 60 times frac{K}{W} times 1.1W + 25º = 91ºC $$
什么是結(jié)到殼熱阻(θJC)?
θJC定義為在封裝底部,結(jié)到外殼溫度的熱阻。該溫度在靠近引腳處測得。使用θJC和公式 (4) 計(jì)算結(jié)溫: $$T_J = (θ_{JC} times Heatflow_{JC}) + T_C$$ 其中 HeatflowJC 是從結(jié)到外殼的熱流量。HeatflowJC可以用公式 (5) 估算: $$Heatflow_{JC} = Heatflow_{TOTAL} -Heatflow_{JT}$$ 其中HeatflowJC 是從結(jié)到頂面的熱流量。圖 4 顯示了為什么θJC 不能用于定制 PCB板上的測量。
圖 4:結(jié)到殼熱阻(θJC)
θJC不能用于定制 PCB 的測量主要有兩個(gè)原因:
1. 定制 PCB 可以是任意尺寸,可能與 JESD51-7 PCB 的固定尺寸( 114.3mmx76.2mm)不同。θJC的目的是比較不同封裝的傳熱能力,因此應(yīng)采用JEDSD51-7 PCB 來進(jìn)行比較,因?yàn)槠鋮?shù)已經(jīng)過研究和測量。
2. 從定制 PCB 封裝流出的實(shí)際熱量是未知的,而 JEDSD51-7 PCB 的該參數(shù)已測得。如果是上述功耗為 1.1W 的示例,在該例中,熱流分為兩條路徑:θJC(對(duì)定制 PCB 而言未知)和通過對(duì)流從封裝表面輻射到環(huán)境的熱流。
結(jié)到殼頂(ΨJT) 和結(jié)到板(ΨJB)熱表征參數(shù)是什么?
希臘字母Ψ由psi演變而成。 JESD51-2A 標(biāo)準(zhǔn)對(duì)ΨJT 和ΨJB進(jìn)行了描述。當(dāng)設(shè)計(jì)人員已知總電氣器件功率時(shí),可以使用 Psi。器件的功率通常很容易測得,再通過psi來計(jì)算,用戶就可以直接算出電路板的結(jié)溫。
ΨΨJT 和ΨJB是在特定環(huán)境下測量的表征虛擬參數(shù)。結(jié)溫可以用公式 (6) 來計(jì)算: $$T_J = Psi_{JT} times P_{DEVICE} + T_{SURFACE} $$ 其中TSURFACE (°C)是封裝頂部的溫度,PDEVICE 是 IC 中的電功率。
公式 (6) 中用到了器件的總功耗。這意味著我們沒必要知道封裝頂部和引腳之間的功率分布。這是用熱表征參數(shù)代替θJC的優(yōu)勢所在。
ΨJT的典型值介于 0.8°/W 和 2.0°/W 之間。 較小的封裝往往具有較低的ΨJT而具有較厚模塑料的較大封裝,其ΨJT也較高。公式 (7) 和公式 (8) 可以用來估計(jì) theta (θ)和 psi (Ψ) 之間的差異:
$$theta_{12} = {{T_{position1} - T_{position2}} over {Power_{Path12}}}$$ $$Psi_{12} = {{T_{position1} - T_{position2}} over {P_{Device}}}$$
利用熱網(wǎng)絡(luò)進(jìn)行計(jì)算
圖 5 顯示出可以轉(zhuǎn)換為等效線性電氣網(wǎng)絡(luò)的熱網(wǎng)絡(luò)。θJA 是結(jié)與環(huán)境之間等效熱阻的典型名稱。
圖5: IC和PCB的熱網(wǎng)絡(luò)圖
采用熱阻 (°C/W)、熱流 (W) 和溫差 (Kelvin) 可以描述系統(tǒng)何時(shí)具有熱穩(wěn)定性。如果再將熱容量 (Ws/K) 添加到網(wǎng)絡(luò)中,則可以計(jì)算瞬態(tài)響應(yīng)。
隨著網(wǎng)絡(luò)規(guī)模和詳細(xì)程度的不斷增加,這種計(jì)算也變得越來越復(fù)雜。硬件開發(fā)人員常常缺乏尺寸、材料常數(shù)和熱流相關(guān)的精確信息。布局和熱程序可以通過有限元計(jì)算以圖形方式表現(xiàn)熱分布,這是避免大型數(shù)學(xué)計(jì)算的一個(gè)好方法。
布局建議
為了保持器件的冷卻,建議IC和銅平面之間的金屬熱傳遞路徑應(yīng)盡可能地短。利用溫差較大的兩點(diǎn)將有助于優(yōu)化冷熱溫度之間的金屬傳熱路徑。在該系統(tǒng)中,與較冷的 VIA2 相比,VIA1 的頂層和底層之間的銅溫差更高(見圖 6)。這意味著 VIA1 可以在板層之間傳輸更大的熱流,從而實(shí)現(xiàn)更有效的冷卻。 通孔靠近封裝放置將最有效。
圖6: 直流開關(guān)電源IC的散熱圖
在 IC 附近部署連續(xù)的銅熱路徑非常必要。避免切割帶有不必要導(dǎo)體跡線的平面。外層最能將熱量輻射到環(huán)境中。避免為靠近 IC 放置的部件部署散熱片,因?yàn)樗鼤?huì)影響熱傳輸。
通孔可以改善板層間的熱流。GND 和穩(wěn)定電位是適合設(shè)置熱通孔的位置。 填充和封蓋的通孔可以提高導(dǎo)熱系數(shù),可以直接部署在表面貼裝技術(shù) (SMT) 焊盤的下方。大規(guī)模的散熱布局通常有利于提高電磁兼容性 (EMC)。但要避免將通孔部署在具有高 dI/dt 或 du/dt (例如開關(guān)節(jié)點(diǎn))的位置,因?yàn)檫@會(huì)降低 EMC 性能。
FR4是一種廣泛使用的PCB環(huán)氧樹脂材料,由于環(huán)氧樹脂和玻璃纖維導(dǎo)熱性能不佳,因此其導(dǎo)熱系數(shù)較低。在 PCB 層之間部署銅通孔可以改善層之間的熱連接。有些 PCB 材料的導(dǎo)熱系數(shù)甚至是 FR4 的 4 到 8 倍。
結(jié)論
MPS的 MPQ4572在本文中用于展示熱參數(shù)與電量和網(wǎng)絡(luò)之間的類似之處,以及兩者之間的相互轉(zhuǎn)換。工程師經(jīng)常使用的電量,將有助于快速理解PCB、環(huán)境和半導(dǎo)體之間相互作用的熱參數(shù)。
熱阻參數(shù)(θJA 和θJC)通常在器件的數(shù)據(jù)手冊中給出,設(shè)計(jì)人員可以據(jù)此比較不同封裝的散熱特性。表征熱阻(ΨJT 和 ΨJB)則允許設(shè)計(jì)人員計(jì)算特定應(yīng)用的結(jié)溫。在 IC 表面的頂部進(jìn)行溫度測量,可以輕松獲得準(zhǔn)確的結(jié)溫。
來源:MPS
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進(jìn)行處理。
推薦閱讀:
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計(jì)
- ADI電機(jī)運(yùn)動(dòng)控制解決方案 驅(qū)動(dòng)智能運(yùn)動(dòng)新時(shí)代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 更高精度、更低噪音 GMCC美芝電子膨脹閥以創(chuàng)新?lián)屨夹袠I(yè)“制高點(diǎn)”
- 本立租完成近億元估值Pre-A輪融資,打造AI賦能的租賃服務(wù)平臺(tái)
- 中微公司成功從美國國防部中國軍事企業(yè)清單中移除
- 華邦電子白皮書:滿足歐盟無線電設(shè)備指令(RED)信息安全標(biāo)準(zhǔn)
- 功率器件熱設(shè)計(jì)基礎(chǔ)(九)——功率半導(dǎo)體模塊的熱擴(kuò)散
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
共模電感
固態(tài)盤
固體繼電器
光傳感器
光電池
光電傳感器
光電二極管
光電開關(guān)
光電模塊
光電耦合器
光電器件
光電顯示
光繼電器
光控可控硅
光敏電阻
光敏器件
光敏三極管
光收發(fā)器
光通訊器件
光纖連接器
軌道交通
國防航空
過流保護(hù)器
過熱保護(hù)
過壓保護(hù)
焊接設(shè)備
焊錫焊膏
恒溫振蕩器
恒壓變壓器
恒壓穩(wěn)壓器