給大家安利一種可以輕松實(shí)現(xiàn)的創(chuàng)新巴倫結(jié)構(gòu)
發(fā)布時(shí)間:2020-03-16 來源:ADI 責(zé)任編輯:wenwei
【導(dǎo)讀】本文介紹僅需0dBm LO驅(qū)動(dòng)的寬帶3GHz至20GHz SiGe無源混頻器。新巴倫結(jié)構(gòu)是實(shí)現(xiàn)寬RF帶寬的關(guān)鍵創(chuàng)新。針對IF頻段應(yīng)用也采用相同的巴倫拓?fù)?,支?00MHz至9GHz的寬IF。該高性能雙平衡混頻器可用于上變頻或下變頻。該混頻器采用2mm×3mm、12引腳小型QFN封裝,提供23 dBm IIP3和14 dBm P1dB。采用3.3V電源供電時(shí),混頻器功耗為132mA。
寬帶混頻器廣泛應(yīng)用于多功能無線收發(fā)器、微波收發(fā)器、微波回程、雷達(dá)和測試設(shè)備。寬帶混頻器使得在具有各種無線電參數(shù)的動(dòng)態(tài)可編程性的無線電架構(gòu)中使用單個(gè)混頻器成為可能。
已經(jīng)證明,CMOS和BiCMOS等先進(jìn)硅技術(shù)能夠在相對窄帶應(yīng)用中實(shí)現(xiàn)高性能混頻器。因此寬帶混頻器最期待的實(shí)現(xiàn)方式是使用集總元件或其他兼容IC制造技術(shù)和幾何形狀的結(jié)構(gòu)制成。平衡混頻器是首選拓?fù)浣Y(jié)構(gòu),因?yàn)榕c非平衡混頻器相比,它們在線性、噪聲系數(shù)和端口到端口隔離方面具有更好的整體性能。巴倫是單平衡混頻器和雙平衡混頻器中用于在平衡和非平衡配置之間轉(zhuǎn)換RF、LO和IF信號的關(guān)鍵組件。能夠在標(biāo)準(zhǔn)IC鑄造工藝中集成巴倫至關(guān)重要,這樣才能生產(chǎn)出寬帶集成混頻器。
本文介紹一種可以在硅、GaAs或任何其他集成過程中輕松實(shí)現(xiàn)的創(chuàng)新巴倫結(jié)構(gòu)。這種巴倫拓?fù)涞膸挶葌鹘y(tǒng)巴倫結(jié)構(gòu)更寬。在0.18µm SiGe BiCMOS工藝中,使用寬帶巴倫設(shè)計(jì)一款3GHz至20GHz高性能混頻器。
寬帶巴倫
混頻器最重要的性能參數(shù)包括轉(zhuǎn)換增益、線性度、噪聲系數(shù)和工作帶寬。集成混頻器中使用的巴倫對所有這些混頻器的性能都有重大影響。集成巴倫的關(guān)鍵性能包括工作頻率范圍、插入損耗、幅度/相位平衡、共模抑制比(CMRR)和物理尺寸。
集成電路應(yīng)用中的兩種常見巴倫結(jié)構(gòu)是傳統(tǒng)平面變壓器巴倫和 Marchand巴倫。這兩種巴倫在窄帶應(yīng)用中都有良好的性能。平面變壓器巴倫由兩個(gè)緊密耦合的變壓器組成。電感的自感和諧振頻率是帶寬的兩個(gè)主要限制因素。自感限制低頻端的帶寬,非平衡和平衡終端的寄生電容和不對稱終端限制高頻端的帶寬。Marchand巴倫由四條四分之一波長傳輸線組成,通常需要在芯片上占用大量空間。在集成電路中利用交錯(cuò)變壓器布局,演示了微型Marchand巴倫。每條線段的電氣長度要求限制了Marchand巴倫的帶寬。當(dāng)電氣長度偏離所需的四分之一波長時(shí),振幅和相位平衡就會降低。通常,設(shè)計(jì)良好的變壓器巴倫或Marchand巴倫可以覆蓋3×至4×最大-最小頻率比的頻率范圍,且性能合理。
眾所周知,Ruthroff巴倫具有非常寬的帶寬,許多分立元件產(chǎn)品都是基于Ruthroff結(jié)構(gòu)開發(fā)。但是,還沒有發(fā)現(xiàn)對微波集成電路應(yīng)用類似結(jié)構(gòu)。
圖1a顯示了一個(gè)Ruthroff型寬帶巴倫原理圖,可使用三個(gè)電感在平面半導(dǎo)體工藝中輕松構(gòu)建。一個(gè)布局示例如圖1b所示。在該布局中,只需要兩個(gè)金屬層,一個(gè)厚金屬層用于三個(gè)低損耗電感,一個(gè)地下通道金屬層用于連接。當(dāng)有額外的厚金屬層可用時(shí),L1和L3可以垂直耦合,這樣尺寸就會更小,它們之間的磁性耦合也可能會更好。
(a). Schematic
(b). Layout
圖1. Ruthroff型寬帶巴倫。
圖1a顯示了一個(gè)Ruthroff型寬帶巴倫原理圖,可使用三個(gè)電感在平面半導(dǎo)體工藝中輕松構(gòu)建。一個(gè)布局示例如圖1b所示。在該布局中,只需要兩個(gè)金屬層,一個(gè)厚金屬層用于三個(gè)低損耗電 感,一個(gè)地下通道金屬層用于連接。當(dāng)有額外的厚金屬層可用時(shí),L1和L3可以垂直耦合,這樣尺寸就會更小,它們之間的磁性耦合也可能會更好。
寬帶特性得益于結(jié)構(gòu)簡單,這會導(dǎo)致寄生電容更少。單端信號由L1和L2分壓得到。因此,巴倫的正端口正好是同相位單端信號電壓的一半。由于L1和L3之間的負(fù)耦合,巴倫的負(fù)端口是具有180°相移的單端信號電壓的一半。
在非常寬的帶寬上可以實(shí)現(xiàn)出色的振幅和相位平衡。圖2顯示了寬帶巴倫配置的仿真性能。振幅不平衡是S21和S31之間的差,相位誤差是S21和S31與期望的180°之間的相位差。建議的巴倫具有非常好的振幅平衡,以及3GHz到20Ghz之間接近180°的相位差。在平衡混頻器和推挽放大器等許多應(yīng)用中使用巴倫時(shí),共模抑制非常重要。圖5b所示的仿真結(jié)果表明,3電感巴倫在3GHz到20GHz范圍內(nèi)的CMRR優(yōu)于20dB。
(a). Amplitude Imbalance and Phase Error
(b). Insertion Loss and CMRR
圖2. 寬帶巴倫的仿真性能。
與變壓器巴倫拓?fù)浣Y(jié)構(gòu)一樣,3電感巴倫的帶寬也受低頻端電感和高頻端寄生電容的限制。當(dāng)電感較低時(shí),負(fù)載阻抗對端口3的L1和L2之間的分壓和端口2的轉(zhuǎn)換電壓影響較大。雖然在低頻范圍內(nèi)振幅平衡和相位差仍然可以接受,但插入損耗增大。因此,較低的終端阻抗或較高的電感將有利于低頻性能。在高頻端,L1和L2之間的寄生電容會降低變壓器的性能,導(dǎo)致較大的相位誤差。精心布局并考慮降低寄生電容可以擴(kuò)大巴倫的高頻工作范圍。
集成巴倫的物理尺寸限制了低端帶寬。為了探索建議的巴倫結(jié)構(gòu)在低頻應(yīng)用中的可行性,設(shè)計(jì)了一款0.5GHz到6GHz的巴倫,并與基于變壓器的傳統(tǒng)巴倫進(jìn)行了對比,性能如圖3所示。
(a). Phase Performance
(b). Amplitude Balance
圖3. 傳統(tǒng)巴倫和新巴倫的仿真性能比較。
集成寬帶RF/微波混頻器
寬帶雙平衡無源混頻器設(shè)計(jì)采用Jazz的SiGe 0.18µm工藝和3電感巴倫配置。混頻器的RF、IF和LO端口為50Ω單端端口,并在RF和IF端口集成巴倫。集成的RF巴倫經(jīng)過優(yōu)化,可覆蓋3GHz至20GHzRF頻率范圍。集成的IF巴倫經(jīng)過優(yōu)化,可覆蓋500MHz至9GHz的極寬頻率范圍。單端LO信號通過有源放大器電路在內(nèi)部轉(zhuǎn)換為差分信號以減小芯片尺寸。使用高速NPN的兩級寬帶放大器向無源混頻器的MOSFET柵極提供足夠的信號電壓擺幅,且在1GHz至20GHz頻率范圍內(nèi)只有0dBm輸入功率。
圖4. 寬帶雙平衡無源混頻器。
該混頻器采用2mm×3mmQFN小型封裝,并使用銅柱倒裝芯片進(jìn)行互連。銅柱連接的附加寄生電容很低,可保持硅的寬帶性能。該混頻器采用3.3V偏置電源,室溫下的功耗為132mA。測得的轉(zhuǎn)換損耗和IIP3性能如圖5所示?;祛l器的RF、LO和IF端口在其寬工作頻率范圍內(nèi)匹配良好。圖6顯示這些端口的回波損耗。應(yīng)該注意的是,RF回波損耗取決于IF端口阻抗,圖6a中的結(jié)果是使用0.9GHz的IF頻率測得。
(a). Conversion Loss and IIP3 vs. RF
(b). Conversion Loss and IIP3 vs. IF
圖5. 寬帶雙平衡無源混頻器測得的性能。
(a). RF and LO Port Return Loss
(b). IF Port Return Loss
圖6. 寬帶雙平衡無源混頻器測得的回波損耗。
與市場上的寬帶混頻器(如表1中所示)相比,使用3電感巴倫設(shè)計(jì)的混頻器可同時(shí)實(shí)現(xiàn)RF和IF范圍的最寬帶寬。它具有最低的LO功耗和最高的集成級別。整體性能優(yōu)于任何已報(bào)道的產(chǎn)品或發(fā)布的寬帶混頻器產(chǎn)品。
表1. 我們的寬帶混頻器與市場同類產(chǎn)品比較
結(jié)論
本文介紹了一種適合現(xiàn)代半導(dǎo)體工藝平面實(shí)施方案的Ruthroff型寬帶巴倫結(jié)構(gòu)。設(shè)計(jì)了一款使用寬帶巴倫的高性能雙平衡混頻器并對其進(jìn)行了性能測量。
LTC5552
● 集成的 LO 緩沖器:0dBm LO 驅(qū)動(dòng)
● 50Ω 寬帶匹配 RF 和 LO 端口
● 寬的 IF 帶寬:DC 至 6GHz
● 上變頻或下變頻
● 高 IIP3:
○ 在 10GHz 為 +22.5dBm
○ 17GHz 為 +18.3dBm
● +14.6dBm 輸入 P1dB (在 10GHz)
● 8dB 轉(zhuǎn)換損耗 (在 10GHz)
● 3.3V / 132mA 電源
● 針對時(shí)分雙工 (TDD) 操作的快速接通 / 關(guān)斷
● 3mm x 2mm、12 引腳 QFN 封裝
推薦閱讀:
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計(jì)
- ADI電機(jī)運(yùn)動(dòng)控制解決方案 驅(qū)動(dòng)智能運(yùn)動(dòng)新時(shí)代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 更高精度、更低噪音 GMCC美芝電子膨脹閥以創(chuàng)新?lián)屨夹袠I(yè)“制高點(diǎn)”
- 本立租完成近億元估值Pre-A輪融資,打造AI賦能的租賃服務(wù)平臺
- 中微公司成功從美國國防部中國軍事企業(yè)清單中移除
- 華邦電子白皮書:滿足歐盟無線電設(shè)備指令(RED)信息安全標(biāo)準(zhǔn)
- 功率器件熱設(shè)計(jì)基礎(chǔ)(九)——功率半導(dǎo)體模塊的熱擴(kuò)散
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
晶體諧振器
晶體振蕩器
晶閘管
精密電阻
精密工具
景佑能源
聚合物電容
君耀電子
開發(fā)工具
開關(guān)
開關(guān)電源
開關(guān)電源電路
開關(guān)二極管
開關(guān)三極管
科通
可變電容
可調(diào)電感
可控硅
空心線圈
控制變壓器
控制模塊
藍(lán)牙
藍(lán)牙4.0
藍(lán)牙模塊
浪涌保護(hù)器
雷度電子
鋰電池
利爾達(dá)
連接器
流量單位