USB供電讓電路保護(hù)成了強(qiáng)制性配置
發(fā)布時(shí)間:2019-11-27 來源:Steven Keeping 責(zé)任編輯:wenwei
【導(dǎo)讀】電路保護(hù)就像是保險(xiǎn),充其量可以看作是事后補(bǔ)救措施,即使是安裝到位,也往往是不夠的。雖然保險(xiǎn)投資不足會威脅到企業(yè)的穩(wěn)定運(yùn)營,但電路保護(hù)不到位可能導(dǎo)致人員傷亡等更嚴(yán)重的后果。
我們以1998年9月2日從紐約肯尼迪國際機(jī)場起飛的瑞士航空111航班為例來看下電路保護(hù)的重要性。執(zhí)飛此航班的是機(jī)齡已有7年的麥克唐納·道格拉斯MD-11客機(jī),在執(zhí)飛此次航班前不久升級了飛行娛樂(IFE)系統(tǒng)。起飛52分鐘后,駕駛艙突然冒出濃煙,機(jī)組人員隨即作出反應(yīng)宣布進(jìn)入緊急狀態(tài),并試圖備降到哈利法克斯機(jī)場,但由于駕駛艙天花板著火燒毀了電氣控制電纜導(dǎo)致飛機(jī)失控,在距離新斯科舍省海岸8公里的海域墜毀,215名乘客和14名機(jī)組人員全部遇難。
事故調(diào)查發(fā)現(xiàn),這套新IFE某個部分使用的材料是引發(fā)此次墜機(jī)的主要原因,這些本應(yīng)防火的材料卻燃燒了起來,并蔓延至關(guān)鍵控制線路。雖然無法完全斷定,但據(jù)推斷IFE電線間的電弧是引起這場大火的罪魁禍?zhǔn)住1M管這些電線都裝有斷路器,但斷路器不會因?yàn)槌霈F(xiàn)電弧而跳閘。這就是一起因電路保護(hù)不足導(dǎo)致229人死亡的真實(shí)案例?,F(xiàn)在,這類電路都配備了電弧故障檢測保護(hù)裝置,以便在感應(yīng)到電弧時(shí)跳閘(不包括按下開關(guān)等正常操作所產(chǎn)生的電?。?。
USB-PD帶來更多危險(xiǎn)
雖然瑞士航空MD-11是由電氣故障而不是電子故障導(dǎo)致的,但現(xiàn)在越來越多的電路中都存在足以產(chǎn)生電?。ㄒ约翱赡芪<吧幕馂?zāi))的電壓和電流,比如升級版的USB電源供電(USB-PD),它可以支持最高20V和5A(最大功率為100W)的高電壓和電流。相較于USB Type-C的5V電壓和3A電流(15W),USB-PD的升級是一大進(jìn)步,但也大大增加了發(fā)生危險(xiǎn)的可能性。
除了與高電壓和電流相關(guān)的風(fēng)險(xiǎn)外,USB-PD在與USB Type-C連接器和電纜一起使用時(shí),也會發(fā)生其他問題。這是因?yàn)閁SB Type-C連接器的引腳間距只有0.5mm,是Type-A和Type-B連接器的五分之一,因此增加了插入或移除期間連接器輕微扭曲導(dǎo)致短路的風(fēng)險(xiǎn)。在連接器內(nèi)部堆積的雜質(zhì)也可能產(chǎn)生類似的效果。此外,USB Type-C的普及也帶動了電纜的大幅發(fā)展,雖然有許多電纜還無法承載100W的功率,但卻沒有標(biāo)識出來。然而這些標(biāo)識并不能確保安全;如果消費(fèi)者要使用未經(jīng)指定的電纜,也可以像合格的電纜一樣輕松地插入U(xiǎn)SB-PD插座中。
在較高電壓和電流下使用USB-PD時(shí),電弧并不是唯一的危險(xiǎn)。由于主母線電源引腳與連接器的其他引腳非常近,短路會讓下游電子器件輕松暴露于20V短路電壓等可以引起故障的電涌中。例如,一米長的USB電纜的電感可以產(chǎn)生“振蕩”,導(dǎo)致峰值電壓遠(yuǎn)高于20V短路電壓(有時(shí)甚至是兩倍)。對于某些應(yīng)用來說,受到過壓影響的下游設(shè)備故障可能會帶來安全問題,因?yàn)槟切┩ǔS糜诳刂齐娎|最大工作電流和電壓的設(shè)備最容易受到損壞。
全面的電路保護(hù)
當(dāng)USB-PD以最高額定電流和電壓運(yùn)行時(shí),可能會產(chǎn)生電弧或損壞元器件,因此,也不能說保護(hù)電路完全沒有用。在經(jīng)常使用USB-PD最高功率模式的應(yīng)用中,例如在為便攜式計(jì)算機(jī)電池充電時(shí),必須提供全面的電路保護(hù)。
安裝在USB Type-C插座引腳和接地之間的瞬態(tài)電壓抑制(TVS)二極管是相對簡單廉價(jià)的電路保護(hù)。在瞬態(tài)短路的情況下,TVS二極管將峰值電壓“鉗位”到連接部件可以承受的級別。雖然TVS二極管能夠提供很好的瞬態(tài)保護(hù),但在用于持續(xù)過電壓事件時(shí)效果卻不是很理想。為了解決這些問題,需要一個與N溝道MOSFET配對的類似于過電壓保護(hù)的附加電路。在持續(xù)的過電壓事件期間,保護(hù)裝置會觸發(fā)nMOSFET以斷開負(fù)載與輸入的連接,從而避免連接的下游裝置發(fā)生過載。但是TVS二極管、保護(hù)裝置和nMOSFET仍然不能抵御所有的過電壓情況;偶爾會發(fā)生繞過USB電纜的短路事件。在這種情況下,插座電感非常低,使得電壓上升的速度快于保護(hù)裝置和nMOSFET的反應(yīng)速度,因此可以使用更多的鉗位裝置,延長電壓上升時(shí)間,讓保護(hù)裝置有足夠的時(shí)間切斷。
綜合保護(hù)無形中增加了USB-PD應(yīng)用的成本和復(fù)雜性,但可以通過選擇合適的組件避免出現(xiàn)這種情況。制造商現(xiàn)開始提供集成式設(shè)備,將TVS二極管、保護(hù)和鉗位設(shè)備集成到單個封裝中(nMOSFET通常保持為分立芯片),能夠在簡化USB-PD保護(hù)設(shè)計(jì)的同時(shí),節(jié)省資金和空間。
結(jié)論
電路保護(hù)永遠(yuǎn)不會是電子產(chǎn)品開發(fā)的末端。但解決方案開發(fā)工程師需要具備一定的知識,才能采取適當(dāng)?shù)谋Wo(hù)措施防止材料損壞,并避免人員受到傷害甚至死亡。
作者簡介
Steven Keeping獲得了英國布萊頓大學(xué)(榮譽(yù))工學(xué)學(xué)士學(xué)位,之前他在Eurotherm和BOC公司工作長達(dá)七年,之后他加入“電子產(chǎn)品雜志”任職,開始了長達(dá)13年的高級編輯和出版工作,涉及到電子生產(chǎn)、測試以及設(shè)計(jì)等,為英國和澳大利亞的Trinity Mirror、CMP和RBI等公司發(fā)表過文章,發(fā)表過的文章有“電子學(xué)新發(fā)現(xiàn)”、“澳大利亞電子工程學(xué)發(fā)展”等。在2006年Steven Keeping成為了一名電子方面的自由記者,目前他定居在澳大利亞悉尼。
出處:貿(mào)澤電子公眾號
微信號:mouserelectronics
推薦閱讀:
特別推薦
- 貿(mào)澤推出RISC-V技術(shù)資源中心 探索開源的未來
- 優(yōu)化簡易PCB電路板的大規(guī)模測試,提高生產(chǎn)效率
- 第10講:SiC的加工工藝(2)柵極絕緣層
- Vishay推出性能先進(jìn)的新款40 V MOSFET
- 大聯(lián)大世平集團(tuán)推出基于瑞芯微產(chǎn)品的低功耗AOV IPC方案
- 節(jié)能先鋒! 笙泉科技三款低功耗MCU,實(shí)現(xiàn)應(yīng)用產(chǎn)品的耐久續(xù)航力
- Silicon Labs突破性超低功耗Wi-Fi 6和低功耗藍(lán)牙5.4模塊加速設(shè)備部署
技術(shù)文章更多>>
- 為了物流行業(yè)的數(shù)字化轉(zhuǎn)型,DigiKey 推出《供應(yīng)鏈大轉(zhuǎn)型》第 3 季視頻
- 安森美榮獲2024年亞洲金選車用電子解決方案供應(yīng)商獎及年度最佳功率半導(dǎo)體獎
- 黑芝麻智能端到端算法參考模型公布,一文了解技術(shù)亮點(diǎn)
- 艾邁斯歐司朗光子創(chuàng)新:利用多光譜傳感技術(shù)減少食物浪費(fèi)
- 新一代電源質(zhì)量監(jiān)控技術(shù)——幫助工業(yè)設(shè)備保持良好狀態(tài)
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
伺服電機(jī)
速度傳感器
鎖相環(huán)
胎壓監(jiān)測
太陽能
太陽能電池
泰科源
鉭電容
碳膜電位器
碳膜電阻
陶瓷電容
陶瓷電容
陶瓷濾波器
陶瓷諧振器
陶瓷振蕩器
鐵電存儲器
通信廣電
通訊變壓器
通訊電源
通用技術(shù)
同步電機(jī)
同軸連接器
圖像傳感器
陀螺傳感器
萬用表
萬用表使用
網(wǎng)絡(luò)電容
微波
微波功率管
微波開關(guān)